The theory and applications of persistent homology

Ippei Obayashi

Center for Advanced Intelligence Project (AIP), RIKEN Advanced Institute for Materials Research (AIMR), Tohoku University

Nov. 5, 2018

Outline

Introduction

- Homology and persistent homology
- Applications of persistent homology
- Software for persistent homology

Introduction

Persistent homology

- Topological Data Analysis (TDA)
 - Data analysis using topology from mathematics
 - Characterize the shape of data quantitatively
 - ★ Connected components (islands), rings (holes), cavities
- Persistent homology (PH) is one of the most important tools for TDA
 - Uses the concept of "homology"
 - Gives the good descriptor of the shape of data (persistence diagram)
- Developed rapidly in 21st century
 - Mathematical theories and algorithms
 - Software
 - Applications to materials science, life science, etc.

- Mathematics and data analysis
 - Probability statistics and machine learning
 - Analysis Fourier analysis and numerical analysis
 - Algebra Symmetry analysis (for crystals)
 - Geometry and topology TDA
- TDA is good for:
 - heterogeneous data
 - disordered data
 - data without complete randomness
- Mathematics and materials
 - Liquid and gas random probability theory and statistical models
 - Crystals ordered group theory
 - Amorphous, polycrystalline, and porous media disordered - topology

Example 1

Atomic configurations of amorphous silica and liquid silica. Do you identify?

From Y. Hiraoka, et al., PNAS 113(26):7035-40 (2016)

We can identify by using persistence diagram.

I. Obayashi (AIP, Riken)

Theory and applications of PH

Example 2

What is the characteristic difference between these two pointcloud ?

I. Obayashi (AIP, Riken)

Theory and applications of PH

Nov. 5, 2018 8 / 38

We can distill the characteristic geometric patters by the combination of PH and machine learning

Homology and Persistent homology

Homology

- We can mathematically formalize "connected components", "rings" "cavities" by *homology*.
- Algebra is used for the formalization
- We can identify the "type" of "holes" by a kind of dimension (called degree)

dim 1: 1	dim 1: 0	dim 1: 1	dim 1: 2
dim 2: 0	dim 2: 1	dim 2: 0	dim 2: 1

1 dim: You can see the inside from outside 2 dim: You cannot see

Count the rings

How many rings in this figure?

Linear algebra is the key to count the rings. Here we have (1) + (2) + (3) = (4) since two arrows with opposite directions are canceled. Therefore these four rings are *linearly dependent*, and we can count the number of *linearly independent* rings by using linear algebra.

I. Obayashi (AIP, Riken)

Theory and applications of PH

Persistent homology

- Characterize the shape of data is difficult problem
 for 3D data or higher dimensional data.
- Homology is used for that purpose, but we can only count the number of holes
- We need better way than homology
- Computational homology is *not* robust to noise.
- \rightarrow Use increasing sequences (filtrations)

r-Ball model

- Input data is a set of point (a pointcloud)
- There is no holes in this pointcloud, but it looks like some holes
- Put discs of radii r on all points
- Three holes
 - We can count the holes by homology

Filtration

As the radius r become larger, some holes appear and disappear. We can make pairs of appearance and disappearance of a hole by using mathematical theory of PH

I. Obayashi (AIP, Riken)

heory and applications of PH

Nov. 5, 2018 17 / 38

Persistence diagram

These pairs are called *birth-death pairs*. and the set of all birth-death pairs are called *persistence diagram* (PD).

• PH is applicable to any dimensional data

- But it is hard to intuitively understand higher dimensional holes, 2D or 3D data is easy to analyze
- Especially, PH is useful for 3D data
- Various increasing sequence
 - Image data
 - Especially 3D data, such as X-ray CT scan data

The following two mathematical theorems are important:

- Structural theorem for PH
 - Gives an algorithm of PDs
 - Uniqueness of a PD for a given input data
- Stability theorem for PH
 - Ensures the robustness of a PD to noises

Applications

Back to Example 1

- The atomic configuration of amorphous silica looks like random
 - Similar to liquid silica
- But amorphous silica has rigidity.
- Some geometric structures are important for the rigidity.
- Y. Hiraoka, T. Nakamura, et al., Hierarchical structures of amorphous solids characterized by persistent homology, PNAS 113 (26) 7035–7040, (2016)

Y.H., T. Nakamura et al. PNAS (2016)

シリカのパーシステント図

ガラスの階層的幾何構造

I. Obayashi (AIP, Riken)

Y.H., T. Nakamura et al. PNAS (2016)

Back to example 2

- Combination of Machine learning (ML) and PH
- We have 200 pointclouds
 - 100 pointclouds are labeled by 0, and other 100 pointclouds are labeled by 1
 - Find characteristic geometric patterns by ML and PH

Framework

- Each pointcloud is transformed into a PD
- Vectorize PDs and apply a machine learning method
- We can visualize the learned result in the form of a PD
- We can identify important birth-death pairs by comparing the learned result.
- The important pairs are mapped on the original input data by using the "inverse analysis of PDs"
- Please see the demo

Software

Software

Software is important for practical data analysis by PH. I introduce you *HomCloud*, data analysis software based on PH.

Various software

There are many software for PH.

- Gudhi
- dipha, phat, ripser
- eirine
- RIVET
- JavaPlex
- Perseus
- Dionysus
 - :

HomCloud

- Focus on applications, especially to materials science
 - MD simulation data
 - 2D/3D image data
 - Easy installation, user interface, machine learning, inverse analysis

We can compute PDs from 2D/3D pointclouds and N dimensional bitmap data.

HomCloud Demo

Summary

- We can analyze the shape of data effectively and quantitatively by using PH
 - Based on topology
 - PDs are good descriptors for the shape of data
 - Useful for 3D data
- Various applications
 - Materials science
 - Life science, geology, etc.
- The fusion of theoretical studies, software development, and practical data analysis is important.

Appendix