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motivation Janalogies between quantum systems and stochastic systems [Nelson(1966), Parisi,Wu(1981)]
=) Can quantum gravity be formulated by using stochastic processes?

main results [We here focus on Markov chains as stochastic processes.]
* For a given Markov chain, we introduce a geometry in configuration space by defining the distance between configurations.

* We show that | AdS geometry emerges for the simulated tempering algorithm. varinari Parisi(1992)1
we can optimize parameters in numerical simulations geometrically. - practical use of the distance |

(A) Definition of the distance
e We first prepare some guantities to define the distance:

« M = {z}: configuration space, S(x): action

« Markov chain with a transition matrix P(z|y) (= (z|Ply)):
L0 5 L1 g Lo i
Probability distribution after n steps: P, (z|zo) = (x| P"|xo)

« Assumptions on P:
] " n— 00 —5(=)
(D unique convergence: Pu(rlo) "5 < (Vo) (7= [ar =5

- (2) detailed balance: P(z|y)e W) = P(y|z)e ")

(3 eigenvalues are all positive

= Transfer matrix: eS(2)/2 pe—5(2)/2
T is positive and symmetrlc ( due to 3 and (@ above).

Spectral decomposition of 7':
= [0)(0] + gy MlkYE [tal0) = /5 | (15 M= d0 > ]

Relaxation to the equilibrium can be understood as
the decoupling of higher modes: 7" "= [0)(0] .

= Connectivity fr(x,y) :

f () = "probability to find a path connectingzandy
"7 in the set of n-step paths in equilibrium )
B e W) n-step paths
= Pa(zly) - — /ﬁy
Normalized connectivity £ (z,y): T \
Folz,y) = L&Y @TRMA
VEEDEGD fiai e it )
" Notes )
o In(z, ) =1
° With normalized states |z, n/2) = - |7;//2‘|x>> i
L En(z,y) = (@,n/2ly,n/2), y
e We define the distance by z,n/ 2 On(,y)

Y)

0n(x,y) is actually an inner angle between
the normalized states [z, n/2), |y, n/2).

0., (x,y) = arccos F, (x

Basic properties
= 0,(7,y) satisfies the axioms of distance.
» [fzcan be easily reached from v, 0,.(x,y) is small.

e |nstead of 0,,(z, y) we can also use:

dy(z,y) = /—21In F,(z,y) — we use this in the following
e Universality of distance
Statement

There are many algorithms to construct P satisfying @-® above.

Among them, for a class of algorithms which generate
local moves in configuration space,

large scale behavior of d.(z,y) does not depend on
the details of the algorithms.

e Examples y
= quadratic action: S(z) = > —x?
analytic form of the distance: d,.(z,y) = \/ |t —

(using the Langevin algorithm)
= cosine action: S(x; 8) = 8o >, (1 — cos(2rz,,))
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e To investigate the large scale geometry of the configuration space,

we coarse-grain the configuration space.
(identify configurations in the same mode as a single configuration)

e.q. for the cosine action (*)

~ __ D
MMRD M =1

dn(z,y) does satisfy the triangle inequality after coarse-graining.
e Metric on M :
Z G (T

ds® = d2 (x,x + dx)
(B) Emergence of AdS geometry
e\\Ve consider a system with highly multimodal equilibrium distribution
and with highly degenerate vacua. (typical action: the cosine action (x))

=)

)dzx,dx, (x,x+ dx :nearby points in M)

e\We implement the simulated tempering algorithm:
(an algorithm to accelerate relaxation [Marinari,Parisi(1992)] )

= \We extend the configuration space
from M to M x A= {z, B.}.

Ba: the overall coefficient of the action |
\ Bo(original value) > B1 > - - -
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different modes are now connected

in the small 5.region transition path / M x A

e Jo investigate the large scale geometry, we introduce
extended, coarse-grained configuration space M x A.

® One can show that the metric on M x Ais AdS :
2 D
ds® = [* (dﬁ - a5 Z dxi)
p=1 '

numerical verification

M x A

: numerical result of d.(z,v)

— : analytic geodesic distance
with parameters

[ = 0.0404

la=2.34 x 10°

q = 0.289
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(C) Geometrical optimization
eKnowing geometry, we can optimize parameters in numerical algorithms.
e.q. the simulated tempering

= We optimize the functional form of 5, = (a) in such a way that
the distances between different modes are minimized.

This should correspond to the case in which Doints:
the metric in the S direction becomes flat %  metastable states obtained

when a Is used as a coordinate: o Inanoptimization process
NN
ds* _ B(a)” , 5 _ 2 o B R
B2 Bla)? da” = (const.)da / 100 S : ;
: \\‘ ) %
s By = 506_1% (R : const.) numerical ;3 ____________________________________ N e

verification




