anonical tensor model through data analysis
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Canonical Tensor Mode example 1 : 2-sphere S

The canonical tensor model (CTM) describes the time
development of the fuzzy space corresponds to a
Cauchy surface >.. The dynamical variables of this
model are a real symmetric three-index tensor ).
and its canonical conjugate P,;., which satisty Poisson
brackets, (o:permutation)

{Qabc; Pdef} — Z 5a0d5a065a0f7

{Qabca Qdef} — {Pabca Pdef} — Oa

and the indices run from 1 to V. The CTM has two
kinds of first-class constraints|6]:

|

Ha — §Pabcpbd63@cdea

1
Hab — Z (Qacdpbcd — chdpacd) 9

and these satisfy the Poisson bracket algebras

{H(Na)> H(Ma)} — H([Nv M]ab)a
{H(Nab)v H(Ma)} — H(Nabe)a
{H(Nab)7 H(Mab)} — H([Nv M]ab)a

where H(N,) = N, H,, H(Ny) = NypyHap and

Nab = P,,.N.. These constraints are correspond to
the Hamiltonian and momentum constraints in
canonical gravity[2]. Quantization of this model can
be performed straightforwardly, and the fuzzy space
counterpart of the Wheeler-DeWitt equations will be

H, | U) = Hop |T) = 0.

Py : physical meaning

P.». was originally introduced as the structure
constant of the algebra of functions f, on a
commutative nonassociative fuzzy space[3]:

fafb — Pabcfc-

But in this study, we considered the normal space (i.e.
commutative associative space) for simplicity and
computability. So if the orthonormal condition is
imposed on the basis function f,(x):

Sy = /Z Aa/Gful@) ).

then P,;. can be obtained by

P = / il ) fle) (1)

where g = det g;; is the determinant of the metric
tensor on ..

fa(x) : general notes

e Well known theorem:

“If X is a compact manifold, then the eigenfunctions
of the Laplace-Beltrami operator V* on X form an
orthogonal basis for L*(3)."

Thanks to this, the orthogonalized basis {f,(z)} can
be automatically obtained by the Helmholtz equation:

(VQ T mg)fa = (
if considering manifold > is compact.
e In the case of the existence of the boundary

0X. # &, one needs to impose a boundary condition
(e.g., Dirichret and Neumann) on f,(x).

P,y : pragmatic definition

e |n general, the index a runs from 1 to NV = oco. But
to perform the numerical calculation, one have to
restrict NV to finite. This “sharp cut-off” causes the
bad behavior to v in (2). So it is better to use
“smeared”’ basis fa(x) to define P,

fa(aj) — 6V2/L2fa(x)v

with a constant L <(the maximal value of m,).

tensor?

e P,;. doesn't seem to have any notion of points
because of the summation over whole space in (1).
Can one extract the information of points from the

e [here is a useful technique for this purpose, known
as tensor-rank decomposition. This method represents
the tensor by the sum of products of R vectors {vé}:

R

Fape = E V, V...

1=1

(2)

(2) is similar to (1), so the index ¢ may correspond to
the point of the space. This seems to be a correct
intuition from the results of numerical calculations.

notes on the tensor-rank decomposition|7]

minimal value of R of the tensor.

e |t is known that the computation of the rank of a

e 'The rank of the tensor” is defined as the available

given tensor is NP-hard problem[4]. So we gave up to
use the true rank, and used the approximation method

like

P, abc

R

1=1

E VUV, + APy,

with sufficiently small error (AP,;.)* /(P ).

e [his method causes a new question, for instance,
the universality of the results (i.e., can one obtain a

similar result from the different R?). From the

numerical calculation, the results (like right figures)

also seem to be independent of the value of R.

Persistent homology/[5]

Prepare the vertex set V' and distance d(v;, v;)

(UZ', V; € V)

(3)

Vietris-Rips stream V R(V, u) is the mapping from a
real parameter u to a simplicial complex that satisfy

(i) [v] € VR(V,u) for all vertex v € V.

(i) n-simplex [vgvy ... v, € VR(V,u) iff
d(v;, v;) < u for all edges [v;v,] € [vovy ... vy
simple example

v — U1, U2, U3,

d(?]l, UQ) — 2, d(UQ, Ug) — 3, d(vg, 2)1) =4
U1
’ 4
(2 Y3
3
u Vietris-Rips complex Betti number
O0<u<? By =3
2 S u<3 / Bg =2
3I<u<i4 / Bg =1
Betti interval or barcode
Bett1 0
0 1 2 3 -
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Let the coordinates on S” to be (6, ), and then the
natural basis function is the set of spherical harmonics
{Y1.n(0,¢)}. The right figure is generated from the
condition “two points ¢ and j are connected iff

viol > 0.2."
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Figure: The histgram of the Figure: The resulted S* with
values of v, v/, N =36,R="72and L =5.

S? has the following Betti numbers for all Z,,:
(B()a B17 BQ) — (17 07 1)

he resulted barcodes (Z- coefficients) are consistent
with this.
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example 2 : Klein bottle K~

The list of the basis function on K2

is omitted, but its derivation is not so -
difficult. The right figure is generated .
from the condition v, v/ > 0.05. \

Ref. Betti numbers of K~ are ﬁ%/
(B07 Bh BQ) — (17 27 1) Figure: The
.. 2
for Z- coefficients, and resufted A° with
N = R =49 and
(B07B1732) — (17170) L = 3.
for Zs coefhicients.
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barcodes. left:Z- coefficients, right:Zs coetficients.
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