Canonical tensor model through data analysis —Dimensions, topologies, and geometries— Taigen Kawano¹, Dennis Obster^{1,2}, Naoki Sasakura¹ ¹Yukawa Institute for Theoretical Physics, Kyoto University, ²Institute for Mathematics, Astrophysics and Particle Physics, Radboud University

Canonical Tensor Model

The canonical tensor model (CTM) describes the time development of the fuzzy space corresponds to a Cauchy surface Σ . The dynamical variables of this model are a real symmetric three-index tensor Q_{abc} and its canonical conjugate P_{abc} , which satisfy Poisson brackets, (σ :permutation)

 $\{Q_{abc}, P_{def}\} = \sum_{\sigma} \delta_{a\sigma_d} \delta_{a\sigma_e} \delta_{a\sigma_f},$ $\{Q_{abc}, Q_{def}\} = \{P_{abc}, P_{def}\} = 0,$

and the indices run from 1 to N. The CTM has two kinds of first-class constraints[6]:

points?

• P_{abc} doesn't seem to have any notion of points because of the summation over whole space in (1). Can one extract the information of points from the tensor?

• There is a useful technique for this purpose, known as tensor-rank decomposition. This method represents the tensor by the sum of products of R vectors $\{v_a^i\}$:

$$P_{abc} = \sum_{i=1}^{R} v_a^i v_b^i v_c^i.$$

(2)

(3)

(2) is similar to (1), so the index i may correspond to the point of the space. This seems to be a correct

example 1 : 2-sphere S^2

Let the coordinates on S^2 to be (θ, φ) , and then the natural basis function is the set of spherical harmonics $\{Y_{l,m}(\theta,\varphi)\}$. The right figure is generated from the condition "two points i and j are connected iff $v_{a}^{i}v_{a}^{j} > 0.2$."

$$\mathcal{H}_{a} = \frac{1}{2} P_{abc} P_{bde} Q_{cde},$$
$$\mathcal{H}_{ab} = \frac{1}{4} \left(Q_{acd} P_{bcd} - Q_{bcd} P_{acd} \right)$$

and these satisfy the Poisson bracket algebras

 $\{H(N_a), H(M_a)\} = H([\tilde{N}, \tilde{M}]_{ab}),\$ $\{H(N_{ab}), H(M_a)\} = H(N_{ab}M_b),$ $\{H(N_{ab}), H(M_{ab})\} = H([N, M]_{ab}),$

where $H(N_a) = N_a \mathcal{H}_a$, $H(N_{ab}) = N_{ab} \mathcal{H}_{ab}$ and $N_{ab} = P_{abc}N_c$. These constraints are correspond to the Hamiltonian and momentum constraints in canonical gravity[2]. Quantization of this model can be performed straightforwardly, and the fuzzy space counterpart of the Wheeler-DeWitt equations will be

 $\hat{\mathcal{H}}_a |\Psi\rangle = \hat{\mathcal{H}}_{ab} |\Psi\rangle = 0.$

P_{abc} : physical meaning

 P_{abc} was originally introduced as the structure constant of the algebra of functions f_a on a commutative nonassociative fuzzy space[3]: $f_a f_b = P_{ab}{}^c f_c.$

intuition from the results of numerical calculations.

notes on the tensor-rank decomposition[7]

• "The rank of the tensor" is defined as the available minimal value of R of the tensor.

• It is known that the computation of the rank of a given tensor is NP-hard problem[4]. So we gave up to use the true rank, and used the approximation method like

$$P_{abc} = \sum_{i=1}^{R} v_a^i v_b^i v_c^i + \Delta P_{abc}$$

with sufficiently small error $(\Delta P_{abc})^2/(P_{abc})^2$.

• This method causes a new question, for instance, the universality of the results (i.e., can one obtain a similar result from the different R?). From the numerical calculation, the results (like right figures) also seem to be independent of the value of R.

Persistent homology[5]

Prepare the vertex set V and distance $d(v_i, v_j)$ $(v_i, v_j \in V)$.

Figure: The histgram of the Figure: The resulted S^2 with values of $v_a^i v_a^j$. N = 36, R = 72 and L = 5.

 S^2 has the following Betti numbers for all \mathbb{Z}_n :

 $(B_0, B_1, B_2) = (1, 0, 1).$

The resulted barcodes (\mathbb{Z}_2 coefficients) are consistent with this.

example 2 : Klein bottle K^2

The list of the basis function on K^2 is omitted, but its derivation is not so difficult. The right figure is generated from the condition $v_a^i v_a^j > 0.05$. Ref. Betti numbers of K^2 are

 $(B_0, B_1, B_2) = (1, 2, 1)$

But in this study, we considered the normal space (i.e. commutative associative space) for simplicity and computability. So if the orthonormal condition is imposed on the basis function $f_a(x)$:

 $\delta_{ab} = \int_{\Sigma} \mathrm{d}x \sqrt{g} f_a(x) f_b(x),$

then P_{abc} can be obtained by

$$P_{abc} = \int_{\Sigma} \mathrm{d}x \sqrt{g} f_a(x) f_b(x) f_c(x) \tag{1}$$

where $g = \det g_{ij}$ is the determinant of the metric tensor on Σ .

$f_a(x)$: general notes

• Well known theorem:

"If Σ is a compact manifold, then the eigenfunctions" of the Laplace-Beltrami operator $abla^2$ on Σ form an orthogonal basis for $L^2(\Sigma)$."

Thanks to this, the orthogonalized basis $\{f_a(x)\}$ can be automatically obtained by the Helmholtz equation:

 $(\nabla^2 + m_a^2)f_a = 0$

Vietris-Rips stream VR(V, u) is the mapping from a real parameter u to a simplicial complex that satisfy (i) $[v] \in VR(V, u)$ for all vertex $v \in V$. (ii) *n*-simplex $[v_0v_1 \dots v_n] \in VR(V, u)$ iff $d(v_i, v_j) \leq u$ for all edges $[v_i v_j] \in [v_0 v_1 \dots v_n]$. simple example

 $V = v_1, v_2, v_3$, $d(v_1, v_2) = 2, d(v_2, v_3) = 3, d(v_3, v_1) = 4$

и	Vietris-Rips complex	Betti number
$0 \le u < 2$	•	$B_0 = 3$
$2 \le u < 3$	•	$B_0 = 2$
	/	

N=R=49 and L = 3.

for \mathbb{Z}_3 coefficients.

if considering manifold Σ is compact. • In the case of the existence of the boundary $\partial \Sigma \neq \emptyset$, one needs to impose a boundary condition (e.g., Dirichret and Neumann) on $f_a(x)$.

P_{abc} : pragmatic definition

• In general, the index a runs from 1 to $N = \infty$. But to perform the numerical calculation, one have to restrict N to finite. This "sharp cut-off" causes the bad behavior to v_a^i in (2). So it is better to use "smeared" basis $f_a(x)$ to define P_{abc} :

 $\tilde{f}_a(x) = e^{\nabla^2/L^2} f_a(x),$

with a constant $L \leq ($ the maximal value of $m_a)$.

Betti interval or barcode

barcodes. left: \mathbb{Z}_2 coefficients, right: \mathbb{Z}_3 coefficients.

References

[1]T. Kawano, D. Obster, N. Sasakura (2018) [2]N. Sasakura, Y. Sato (2015) [3]N. Sasakura (2011) [4]C. J. Hillar, L. Lim (2013) [5]G. Carlsson (2009) [6]N. Sasakura (2012) [7]P. Comon (2014) etc.