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Canonical Tensor Model

The canonical tensor model (CTM) describes the time
development of the fuzzy space corresponds to a
Cauchy surface Σ. The dynamical variables of this
model are a real symmetric three-index tensor Qabc

and its canonical conjugate Pabc, which satisfy Poisson
brackets, (σ:permutation)

{Qabc, Pdef} =
∑
σ

δaσdδaσeδaσf ,

{Qabc, Qdef} = {Pabc, Pdef} = 0,

and the indices run from 1 to N . The CTM has two
kinds of first-class constraints[6]:

Ha =
1

2
PabcPbdeQcde,

Hab =
1

4
(QacdPbcd −QbcdPacd) ,

and these satisfy the Poisson bracket algebras

{H(Na), H(Ma)} = H([Ñ , M̃ ]ab),

{H(Nab), H(Ma)} = H(NabMb),

{H(Nab), H(Mab)} = H([N,M ]ab),

where H(Na) = NaHa, H(Nab) = NabHab and
Ñab = PabcNc. These constraints are correspond to
the Hamiltonian and momentum constraints in
canonical gravity[2]. Quantization of this model can
be performed straightforwardly, and the fuzzy space
counterpart of the Wheeler-DeWitt equations will be

Ĥa |Ψ⟩ = Ĥab |Ψ⟩ = 0.

Pabc : physical meaning

Pabc was originally introduced as the structure
constant of the algebra of functions fa on a
commutative nonassociative fuzzy space[3]:

fafb = Pab
cfc.

But in this study, we considered the normal space (i.e.
commutative associative space) for simplicity and
computability. So if the orthonormal condition is
imposed on the basis function fa(x):

δab =

∫
Σ

dx
√
gfa(x)fb(x),

then Pabc can be obtained by

Pabc =

∫
Σ

dx
√
gfa(x)fb(x)fc(x) (1)

where g = det gij is the determinant of the metric
tensor on Σ.

fa(x) : general notes

• Well known theorem:
“If Σ is a compact manifold, then the eigenfunctions
of the Laplace-Beltrami operator ∇2 on Σ form an
orthogonal basis for L2(Σ).”
Thanks to this, the orthogonalized basis {fa(x)} can
be automatically obtained by the Helmholtz equation:

(∇2 +m2
a)fa = 0

if considering manifold Σ is compact.
• In the case of the existence of the boundary
∂Σ ̸= ∅, one needs to impose a boundary condition
(e.g., Dirichret and Neumann) on fa(x).

Pabc : pragmatic definition

• In general, the index a runs from 1 to N = ∞. But
to perform the numerical calculation, one have to
restrict N to finite. This “sharp cut-off” causes the
bad behavior to via in (2). So it is better to use
“smeared” basis f̃a(x) to define Pabc:

f̃a(x) = e∇
2/L2

fa(x),

with a constant L ≲(the maximal value of ma).

points?

• Pabc doesn’t seem to have any notion of points
because of the summation over whole space in (1).
Can one extract the information of points from the
tensor?
• There is a useful technique for this purpose, known
as tensor-rank decomposition. This method represents
the tensor by the sum of products of R vectors

{
via
}
:

Pabc =

R∑
i=1

viav
i
bv

i
c. (2)

(2) is similar to (1), so the index i may correspond to
the point of the space. This seems to be a correct
intuition from the results of numerical calculations.

notes on the tensor-rank decomposition[7]

• “The rank of the tensor” is defined as the available
minimal value of R of the tensor.
• It is known that the computation of the rank of a
given tensor is NP-hard problem[4]. So we gave up to
use the true rank, and used the approximation method
like

Pabc =

R∑
i=1

viav
i
bv

i
c +∆Pabc (3)

with sufficiently small error (∆Pabc)
2/(Pabc)

2.
• This method causes a new question, for instance,
the universality of the results (i.e., can one obtain a
similar result from the different R?). From the
numerical calculation, the results (like right figures)
also seem to be independent of the value of R.

Persistent homology[5]

Prepare the vertex set V and distance d(vi, vj)
(vi, vj ∈ V ).
Vietris-Rips stream V R(V, u) is the mapping from a
real parameter u to a simplicial complex that satisfy
(i) [v] ∈ V R(V, u) for all vertex v ∈ V .
(ii) n-simplex [v0v1 . . . vn] ∈ V R(V, u) iff
d(vi, vj) ≤ u for all edges [vivj] ∈ [v0v1 . . . vn].
simple example
V = v1, v2, v3,
d(v1, v2) = 2, d(v2, v3) = 3, d(v3, v1) = 4

Betti interval or barcode

example 1 : 2-sphere S2

Let the coordinates on S2 to be (θ, φ), and then the
natural basis function is the set of spherical harmonics
{Yl,m(θ, φ)}. The right figure is generated from the
condition “two points i and j are connected iff
viav

j
a > 0.2.”
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Figure: The histgram of the
values of viav

j
a.

Figure: The resulted S2 with
N = 36, R = 72 and L = 5.

S2 has the following Betti numbers for all Zn:

(B0, B1, B2) = (1, 0, 1).

The resulted barcodes (Z2 coefficients) are consistent
with this.
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example 2 : Klein bottle K2

Figure: The
resulted K2 with
N = R = 49 and
L = 3.

The list of the basis function on K2

is omitted, but its derivation is not so
difficult. The right figure is generated
from the condition viav

j
a > 0.05.

Ref. Betti numbers of K2 are

(B0, B1, B2) = (1, 2, 1)

for Z2 coefficients, and

(B0, B1, B2) = (1, 1, 0)

for Z3 coefficients.
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barcodes. left:Z2 coefficients, right:Z3 coefficients.
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