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Introduction – effective dynamics of observables

Observables are a long-standing challenge in Quantum Gravity:

Diffeomorphism invariance ⇒ non-local observables
∫
ddx
√
gO(x)

Causal Dynnamical Triangulationns (CDT) have a built-in foliation
⇒ time-dependent observables O(t) are possible

Questions:

1 Is it possible to describe dynamics of O(t) with an effective theory?

〈O(t)〉 =

∫
Dgµν e−S[g]O(t)

?∼
∫
DO e−Seff [O]O(t)

2 If so, can we infer S[g] from knowledge of Seff [O]?
(useful if we can construct continuum limit of Seff [O] but not of S[g])

This talk:

Seff for the spatial volume of CDT in 2 + 1 dimensions
⇒ connection to Hǒrava-Lifshitz gravity
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Outline

Lightning overview of CDT and its results

2+1 dimensional CDT and its volume profiles

Condensation from Hǒrava-Lifshitz minisuperspace model
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Causal Dynamical Triangulations in a nutshell

A lattice approach to the nonperturbative quantization of gravity

⇒ discretization of spacetime with lattice cutoff ≡ a

Dynamical spacetime ⇒ dynamical lattice:

random d-dimensional triangulations

(in Euclidean signature, e−S weigth ⇒ Monte Carlo simulations)

Experience from the past (DT): no classical geometry and no 2nd order phase transition for
most general class of geometries

Restricting the ensemble of geometries to those with a regular foliation both features are
obtained ⇒ Causal Dynamical Triangulations
[Ambjørn, Loll - 1998 (d = 2); Ambjørn, Jurkiewicz, Loll - 2000,... (d > 2)]
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The model

The statistical model of CDT is defined by the partition function

Z(κd, κd−2) =
∑
Nd

e−κdNd
∑
TNd

1
C(T )

eκd−2Nd−2 ≡
∑
Nd

e−κdNdZ(Nd, κd−2)

Nn = number of n-dimensional simplices (n = 0, . . . , d)

Nn = are constrained by topological relations
⇒ only 1 independent variable in 1 + 1 dimensions,

and only 2 independent variables in 2 + 1 and 3 + 1 dimensions

In CDT we distinguish time-like objects (connecting leaves)
and space-like objects (on a single leaf)

⇒ one more free variable in 3 + 1 dimensions (with coupling ∆)

Monte Carlo simulations:
(1) κ0N0 instead of κd−2Nd−2;
(2) constant volume (canonical ensemble);
(3) increase Nd and look for scaling
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Emergence of a macroscopic universe

Phase diagram of CDT: [Ambjørn, Jurkiewicz, Loll, Görlich, Jordan]
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Volume profile in 3+1 dimensions

Characteristic features of the condensate:
macroscopic blob/droplet surrounded by microscopic stalk
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In the bulk of the macroscopic universe:
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⇒ emergence of a classical evolution

(volume profile of a 4-sphere) [Ambjørn, Görlich, Jurkiewicz, Loll - ’07]
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GR minisuperspace

The cos3(t) profile is obtained also as a solutionn of a GR-inspired minisuperspace model
(gij = φ(t)2 ĝij ⇒ V3(t) =

∫
d3x
√
g ∝ φ(t)3)

S =
1

2G

∫ τ
2

− τ
2

dt

(
c1
V̇ 2

3 (t)

V3(t)
+ c2V

1/3
3 (t)

)

+ constraint: V4 =
∫ τ

2
− τ

2
dtV3(t)

⇒
∫
DV3 δ

(
V4 −

∫ τ
2

− τ
2

dtV3(t)

)
e−S

Discretization:

S = κ
∑
i

(
c1

(N3(i+ 1)−N3(i))2

N3(i)
+ c2N

1/3
3 (i)

)
– Reconstructed directly from the CDT data (inside the droplet) by studying correlators
〈N3(i)N3(j)〉 [Ambjorn et al. ’08-’12-’13]
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Condensation from Balls-in-Boxes model

GR-inspired minisuperspace model explains not only the bulk evolution, but also the stalk, as
well as occurrence of other phases [Bogacz, Burda, Waclaw - ’12]

⇒ Balls-in-Boxes model = discrete path integral with a constraint

ZBIB(T,M) =
M∑

m1=mmin

...
M∑

mT=mmin

δM,
∑
imi

T∏
j=1

g(mj ,mj+1)

=
∑
{mj}

e−S[{mj}]δM,
∑
imi

,

g(m,n) = exp

−c1 2(m − n)2

m + n
− c2

m1/3 + n1/3

2

 ⇒

localized

antiferromagnetic

droplet

c1

1st order

2nd order
correlated fluid

uncorrelated fluid

c2
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CDT in 2+1 dimensions

(2 + 1)-dimensional CDT is not much easier than (3 + 1)d
(but it has one less coupling in the lattice action)

[Ambjørn, Jurkiewicz, Loll - ’00]

⇒ again an extended phase (dH ∼ 3) with a condensation phenomenon
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Volume profile in 2+1 dimensions [DB, Henson -’14]
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Volume profile in 2+1 dimensions [DB, Henson -’14]
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Failure of the GR-inspired minisuperspace model – 1

No potential for V2(t) in GR action:

S(2+1)d−mini =
1

2G

∫ τ
2

− τ
2

dt
V̇ 2

2 (t)

V2(t)

+ constraint: V3 =
∫ τ

2
− τ

2
dtV2(t)

Solution:

V̄2(t) =

{
A cos2

(
2π2At
V3

)
, for t ∈ [− V3

4πA
,+ V3

4πA
] ,

0 , for t ∈ [− τ
2
,− V3

4πA
) ∪ (+ V3

4πA
,+ τ

2
]

On-shell action: S(2+1)d−mini[V̄2] = A2π3

2GV3

minimized by A = 0, but this violates V3
4πA

≤ τ
2
⇒ Ā = V3

2πτ

⇒ S(2+1)d−mini[V̄2; Ā] = πV3
8Gτ2

> 0

However:
S(2+1)d−mini[V2(t) = V3/τ ] = 0
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Failure of the GR-inspired minisuperspace model – 2

Constant configuration is the absolute minimum!

Same model as in (3+1)d but with c2 = 0
⇒ Correlated fluid in [Bogacz, Burda, Waclaw - ’12]

localized

antiferromagnetic

droplet

c1

1st order

2nd order
correlated fluid

uncorrelated fluid

c2

Also: same model as in (1+1)d CDT ...
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CDT in 1+1 dimensions

(1 + 1)-dimensional CDT

t

is precisely a BIB model, with mi = li giving the length of the spatial slice,
and (for open boundary conditions)

g(li, li+1) =
(li + li+1)!

li! li+1!

It basically counts the number of ways we can place li+1 balls in li + 1 boxes. Therefore the
(1 + 1)-dimensional model of CDT is a BIB model whose reduced transfer matrix is defined by
an auxiliary BIB model.

The model is exactly solvable [Ambjørn, Loll - ’98] and it has no droplet phase

Effective continuum action:

Seff =

∫ τ
2

− τ
2

dt
L̇2(t)

4L(t)

⇒
No condensation

The action is not a reduction of Einstein-Hilbert (topological in d = 2),
but of Horava-Lifshitz gravity in 1 + 1 dimensions [Ambjorn, Glaser, Sato, Watabiki - ’13]
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Hǒrava-Lifshitz gravity (and CDT)

HL gravity: a dynamical theory of geometries with a preferred foliation

⇒ Reduced symmetry: foliation-preserving diffeomorphisms DiffF (M)

Evidence for a CDT-HL relation comes from

Presence of a foliation

Analogies in phase diagram (CDT in (3 + 1)d) [Ambjorn, Goerlich, Jurkiewicz, Loll - ’10]

Short-scale spectral dimension in (2 + 1)d [DB, Henson - ’09]

Large-scale geometry (stretched sphere) in (2 + 1)d [DB, Henson - ’09]

Minisuperspace action with positive kinetic term
(in (2 + 1)d, compared to kinetic term of moduli [Budd - ’11])

Quantum Hamiltonian in (1 + 1)d [Ambjorn, Glaser, Sato, Watabiki - ’13]
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An HL-inspired minisuperspace model [DB, Henson -’14]

HL gravity (with constant lapse N):

S(2+1)−HL =
1

16πG

∫
dt d2xN

√
g
{
σ(λK2 −KijKij) + bR− γ R2

}
+ volume constraint: V3 =

∫
dt d2xN

√
g

Minisuperspace reduction: gij = φ2(t) ĝij (V2(t) =
∫
d2x
√
g = 4πφ2(t))

⇒ S(2+1)−mini =
1

2κ2

∫ τ
2

− τ
2

dt

{
φ̇2 −

ξ

φ2
+ b′

}

+ volume constraint: V ≡ V3 − 4πN
∫
dt φ2(t) = 0

+ kinematic constraint: φ(t) ≥ ε
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Competing effects

Z(2+1)−mini =

∫
φ(t)>ε

Dφ(t) δ(V) exp

{
−

1

2κ2

∫ τ
2

− τ
2

dt

[
φ̇2 −

ξ

φ2

]}
In the limit κ→ 0 we expect the partition function (and the observables) to be dominated by
those configurations that minimize the action

Kinetic term favors constant solutions ⇒ for ξ = 0, taking into account volume constraint
we have

φ̄0(t) =

√
V3

4πτ
as we saw before

For ξ > 0, potential favors configurations saturating the kinematic constraint
(i.e. φ(t) = ε)

⇒ we might expect the dominance of configurations with a stalk saturating the kinematic
constraint, and a droplet taking care of the missing volume
(in fact, flipping the sign of the kinetic term, a delta function would do the job)

(Note: due to unboundedness of the action for ξ > 0, dominant configuration is not necessarily a
saddle point)
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Minimization of the action – 1

Local minima

e.o.m.: φ̈+ ω2φ−
ξ

φ3
= 0

(ω is a Lagrange multiplier to enforce volume constraint)

It is exactly solvable (isotonic oscillator):

φ0(t) =
1

ωA

√
(ω2A4 − ξ) cos2(ωt+ ψ) + ξ
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φ3
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(ω is a Lagrange multiplier to enforce volume constraint)

It is exactly solvable (isotonic oscillator):

φ0(t) =
1

ωA

√
(ω2A4 − ξ) cos2(ωt+ ψ) + ξ

For π
ω

= τ
n

, n ∈ N (and solving the volume constraint):

⇒ S(2+1)−mini[φ0(t)] =
nπ

8κ2

(
nV3

Nτ2
− 8
√
ξ

)

However, for φ(t) = ξ1/4/
√
ω ≡ φ̄0 and ω = 4πNτ

√
ξ/V3:

S(2+1)−mini[φ̄0] = −
2πNτ2ξ

κ2V3
≤ S(2+1)−mini[φ0(t)]
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Minimization of the action – 2

Absolute minima

φ̄(t) =


√(

Ṽ3ω̄
2π2N

− ε2
)

cos2 (ω̄t) + ε2 , for t ∈ [− π
2ω̄
,+ π

2ω̄
] ,

ε , for t ∈ [− τ
2
,− π

2ω̄
) ∪ (+ π

2ω̄
,+ τ

2
]

ω̄ ≡ ω(Aε) =

(
2π2Nσ2

Ṽ3

) 1
3

, σ2 =
ξ

ε2

Ṽ3 = V3 − 4πNε2τ +
(
2π2

) 2
3

(
V3

σ2

) 1
3

ε2 +O(ε4)

The action evaluates to

S(2+1)−mini[φ̄(t)] =
1

κ2

− ξτ

2ε2
+

3

4

(
πV3ξ2

2Nε4

) 1
3

− π
√
ξ +

1

2

(
π5Nε4ξ

4V3

) 1
3


which is smaller than for other configurations, for ε2 � V3/τ .
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Minimization of the action – 3

The droplet/condensate is stable in a finite interval: τ− < τ < τ+

π
ω̄
< τ ⇒ there is a minimal value of τ below which the droplet is unstable:

τ− '
(
πV3ε2

2Nξ

) 1
3

⇒ constant configurationn dominates for τ < τ−
(consistent with [Ambjørn, Jurkiewicz, Loll - ’00; Cooperman, Miller - ’13])

S(2+1)−mini[φ̄0] ∼ −τ2 vs. S(2+1)−mini[φ̄(t)] ∼ −τ

⇒ there is a maximal value of τ above which the constant solution is favourable

and τ+ < τmax ≡ V3/(4πNε2)

(for τ > τmax the constraint φ(t) > ε is incompatible with the volume constraint)
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Fitting the data
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Simulations of the BIB model [DB, Ryan -’16]

Minimization analysis is far from rigorous, and it relies on several assumptions
⇒ comparison to direct Monte Carlo simulations of the BIB model is important

g(mj ,mj+1) = exp

{
−

2(mj+1 −mj)2

mj+1 +mj
b1 +

2

mj+1 +mj
b2

}

−2 −1 0 1 2

b1

−20

−10

0

10

20
b 2

phase diagram

Phase diagram for system with T = 80, M = 4000: droplet (red triangles), localized (yellow
squares), antiferromagnetic (blue pentagons), correlated fluid (green hexagons).
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Phases [DB, Ryan -’16]

Typical configurations for the various phases:
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Phases [DB, Ryan -’16]

Mean value 〈mi〉 as a function of i, for samples in the correlated phase and in the droplet phase:
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Further hints for the unbounded potential?

In [Benedetti, Loll, Zamponi - ’07] we obtained the following continuum Hamiltonian from a very special
model of (2 + 1)d CDT:

Ĥ = −
∂

∂V2
V

3/2
2

∂

∂V2
−

1

16

1

V
1/2
2

+ ΛV2

to be compared with the Hamiltonian of our HL minisuperspace model:

Ĥ = −G
(

∂

∂V2
V2

∂

∂V2
+ γ

1

V2

)
+ ΛV2

Notice: roughly the same for G→ V
1/2
2

Maybe possible to obtain missing G from the more realistic model? (from ABAB matrix model)
Or maybe just a problem with scaling G canonically? (⇒ Lifshitz scaling?)

Of course just a speculation, but presence of a term singular at V2 = 0 and seemingly
unbounded from below is very suggestive!
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Conclusions

CDT is a nonperturbative lattice approach to quantum geometry, and a rather unique case
in which the minisuperspace model can be derived as effective description, not as
approximation

In (2+1)d the GR-inspired minisuperspace model has no potential term for the spatial
volume

⇒ the droplet phase is never favorable

HL-inspired model succeeds very well in reproducing the spacetime condensation
of (2+1)d CDT!

In naive continuum limit, the coupling of R2 goes to zero, but a nontrivial limit might be
reached if a Lifshitz point exists

It would be interesting to study volume fluctuations in CDT and directly extract the
effective action from there (⇒ unicity of the effective action)
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