Effective dynamics for the spatial volume of 3-dimensional CDT

Dario Benedetti

Laboratoire de Physique Théorique CNRS, Université Paris-Sud, Orsay, France

refs: Class. Quant. Grav. 32 (2015) 215007 [with J. Henson] Class. Quant. Grav. 34 (2017) 105012 [with J. Ryan] November 8, 2018 - Nagoya

Introduction - effective dynamics of observables

Observables are a long-standing challenge in Quantum Gravity:

Diffeomorphism invariance \Rightarrow non-local observables $\int d^d x \sqrt{g} \mathcal{O}(x)$

Causal Dynnamical Triangulationns (CDT) have a built-in foliation \Rightarrow time-dependent observables $\mathcal{O}(t)$ are possible

Questions:

() Is it possible to describe dynamics of $\mathcal{O}(t)$ with an effective theory?

$$\langle \mathcal{O}(t) \rangle = \int \mathcal{D}g_{\mu\nu} \, e^{-S[g]} \mathcal{O}(t) \stackrel{?}{\sim} \int \mathcal{D}\mathcal{O} \, e^{-S_{\mathrm{eff}}[\mathcal{O}]} \mathcal{O}(t)$$

2 If so, can we infer S[g] from knowledge of $S_{\text{eff}}[\mathcal{O}]$? (useful if we can construct continuum limit of $S_{\text{eff}}[\mathcal{O}]$ but not of S[g])

This talk:

 $S_{\rm eff} \text{ for the spatial volume of CDT in } 2+1 \text{ dimensions} \\ \Rightarrow \text{ connection to Hořava-Lifshitz gravity}$

Outline

- Lightning overview of CDT and its results
- 2+1 dimensional CDT and its volume profiles

• Condensation from Hořava-Lifshitz minisuperspace model

Causal Dynamical Triangulations in a nutshell

- A lattice approach to the nonperturbative quantization of gravity \Rightarrow discretization of spacetime with *lattice cutoff* $\equiv a$
- Dynamical spacetime \Rightarrow dynamical lattice: random *d*-dimensional triangulations (in Euclidean signature, e^{-S} weigth \Rightarrow Monte Carlo simulations)

Causal Dynamical Triangulations in a nutshell

- A lattice approach to the nonperturbative quantization of gravity \Rightarrow discretization of spacetime with *lattice cutoff* $\equiv a$
- Dynamical spacetime \Rightarrow dynamical lattice: random *d*-dimensional triangulations (in Euclidean signature, e^{-S} weigth \Rightarrow Monte Carlo simulations)
- $\bullet\,$ Experience from the past (DT): no classical geometry and no 2^{nd} order phase transition for most general class of geometries

Causal Dynamical Triangulations in a nutshell

- A lattice approach to the nonperturbative quantization of gravity \Rightarrow discretization of spacetime with *lattice cutoff* $\equiv a$
- Dynamical spacetime \Rightarrow dynamical lattice: random *d*-dimensional triangulations (in Euclidean signature, e^{-S} weigth \Rightarrow Monte Carlo simulations)
- Experience from the past (DT): no classical geometry and no 2nd order phase transition for most general class of geometries
- Restricting the ensemble of geometries to those with a regular foliation both features are obtained \Rightarrow Causal Dynamical Triangulations

[Ambjørn, Loll - 1998 (d=2); Ambjørn, Jurkiewicz, Loll - 2000,... (d>2)]

The model

The statistical model of CDT is defined by the partition function

$$Z(\kappa_d,\kappa_{d-2}) = \sum_{N_d} e^{-\kappa_d N_d} \sum_{T_{N_d}} \frac{1}{C(T)} e^{\kappa_{d-2}N_{d-2}} \equiv \sum_{N_d} e^{-\kappa_d N_d} Z(N_d,\kappa_{d-2})$$

• N_n = number of *n*-dimensional simplices (n = 0, ..., d)

- N_n = are constrained by topological relations
 ⇒ only 1 independent variable in 1 + 1 dimensions, and only 2 independent variables in 2 + 1 and 3 + 1 dimensions
- In CDT we distinguish time-like objects (connecting leaves) and space-like objects (on a single leaf)

 \Rightarrow one more free variable in 3+1 dimensions (with coupling Δ)

- Monte Carlo simulations:
 - (1) $\kappa_0 N_0$ instead of $\kappa_{d-2} N_{d-2}$;
 - (2) constant volume (canonical ensemble);
 - (3) increase N_d and look for scaling

Emergence of a macroscopic universe

[Ambjørn, Jurkiewicz, Loll, Görlich, Jordan]

Phase C_{dS} :

- $d_H \sim 4$
- $\bullet~{\rm from}~S^1\times S^3$ to an effective S^4
- spontaneous breaking of time translation

 \Leftrightarrow "condensation of spacetime"

Volume profile in 3+1 dimensions

Characteristic features of the condensate: macroscopic blob/droplet surrounded by microscopic stalk

In the bulk of the macroscopic universe:

$$\langle N_3(i)\rangle = \frac{3N_4^{3/4}}{4s_0} \,\cos^3\left(\frac{i}{s_0N_4^{1/4}}\right) \Rightarrow \text{emergence of a classical evolution}$$

(volume profile of a 4-sphere) [Ambjørn, Görlich, Jurkiewicz, Loll - '07]

GR minisuperspace

• The $\cos^3(t)$ profile is obtained also as a solution of a GR-inspired minisuperspace model $(g_{ij} = \phi(t)^2 \hat{g}_{ij} \Rightarrow V_3(t) = \int d^3x \sqrt{g} \propto \phi(t)^3)$

$$S = \frac{1}{2G} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \left(c_1 \frac{\dot{V}_3^2(t)}{V_3(t)} + c_2 V_3^{1/3}(t) \right)$$

$$V_{-} = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dV_{-}(t)$$

+ constraint: $V_4 = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt V_3(t)$

$$\Rightarrow \int \mathcal{D}V_3 \,\delta\left(V_4 - \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt V_3(t)\right) \, e^{-S}$$

• Discretization:

$$S = \kappa \sum_{i} \left(c_1 \frac{(N_3(i+1) - N_3(i))^2}{N_3(i)} + c_2 N_3^{1/3}(i) \right)$$

– Reconstructed directly from the CDT data (inside the droplet) by studying correlators $\langle N_3(i)N_3(j)\rangle$ [Ambjorn et al. '08-'12-'13]

Condensation from Balls-in-Boxes model

GR-inspired minisuperspace model explains not only the bulk evolution, but also the stalk, as well as occurrence of other phases [Bogacz, Burda, Waclaw - `12]

 \Rightarrow Balls-in-Boxes model = discrete path integral with a constraint

$$\begin{aligned} Z_{\text{BIB}}(T,M) &= \sum_{m_1=m_{\min}}^{M} \dots \sum_{m_T=m_{\min}}^{M} \delta_{M,\sum_i m_i} \prod_{j=1}^{T} g(m_j, m_{j+1}) \\ &= \sum_{\{m_j\}} e^{-S[\{m_j\}]} \delta_{M,\sum_i m_i} \,, \end{aligned}$$

CDT in 2+1 dimensions

(2+1)-dimensional CDT is not much easier than (3+1)d (but it has one less coupling in the lattice action)

 \Rightarrow again an extended phase $(d_H \sim 3)$ with a condensation phenomenon

Volume profile in 2+1 dimensions

[DB, Henson -'14]

Volume profile in 2+1 dimensions

[DB, Henson -'14]

Volume profile in 2+1 dimensions

[DB, Henson -'14]

Failure of the GR-inspired minisuperspace model -1

• No potential for $V_2(t)$ in GR action:

$$S_{(2+1)d-\min} = \frac{1}{2G} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \, \frac{\dot{V}_2^2(t)}{V_2(t)}$$

constraint: $V_3 = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt V_2(t)$

Solution:

+

$$\bar{V}_2(t) = \begin{cases} A\cos^2\left(\frac{2\pi^2At}{V_3}\right), & \text{for } t \in [-\frac{V_3}{4\pi A}, +\frac{V_3}{4\pi A}], \\ 0, & \text{for } t \in [-\frac{\tau}{2}, -\frac{V_3}{4\pi A}) \cup (+\frac{V_3}{4\pi A}, +\frac{\tau}{2}] \end{cases}$$

• On-shell action:
$$S_{(2+1)d-\min}[\bar{V}_2] = \frac{A^2\pi^3}{2GV_3}$$

minimized by $A = 0$, but this violates $\frac{V_3}{4\pi A} \leq \frac{\tau}{2} \Rightarrow \bar{A} = \frac{V_3}{2\pi\tau}$
 $\Rightarrow S_{(2+1)d-\min}[\bar{V}_2; \bar{A}] = \frac{\pi V_3}{8G\tau^2} > 0$
• However:

$$S_{(2+1)d-\min}[V_2(t) = V_3/\tau] = 0$$

Failure of the GR-inspired minisuperspace model -2

- Constant configuration is the absolute minimum!
- Same model as in (3+1)d but with $c_2 = 0$
 - \Rightarrow Correlated fluid in [Bogacz, Burda, Waclaw '12]

• Also: same model as in (1+1)d CDT ...

CDT in 1+1 dimensions

(1+1)-dimensional CDT

is precisely a BIB model, with $m_i = l_i$ giving the length of the spatial slice, and (for open boundary conditions)

$$g(l_i, l_{i+1}) = \frac{(l_i + l_{i+1})!}{l_i! l_{i+1}!}$$

It basically counts the number of ways we can place l_{i+1} balls in $l_i + 1$ boxes. Therefore the (1+1)-dimensional model of CDT is a BIB model whose reduced transfer matrix is defined by an auxiliary BIB model.

The model is exactly solvable [Ambjørn, Loll - '98] and it has no droplet phase

CDT in 1+1 dimensions

$$g(l_i, l_{i+1}) = \frac{(l_i + l_{i+1})!}{l_i! l_{i+1}!} \sim 2^{l_i + l_{i+1}} e^{-\frac{(l_{i+1} - l_i)^2}{l_i + l_{i+1}}}$$

Effective continuum action:

$$S_{\text{eff}} = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \, \frac{\dot{L}^2(t)}{4L(t)}$$

 \Rightarrow

• No condensation

• The action is not a reduction of Einstein-Hilbert (topological in d = 2), but of Horava-Lifshitz gravity in 1 + 1 dimensions [Ambjorn, Glaser, Sato, Watabiki - '13]

Hořava-Lifshitz gravity (and CDT)

- HL gravity: a dynamical theory of geometries with a preferred foliation \Rightarrow Reduced symmetry: foliation-preserving diffeomorphisms Diff_F(M)
- Evidence for a CDT-HL relation comes from
 - Presence of a foliation
 - Analogies in phase diagram (CDT in (3+1)d) [Ambjorn, Goerlich, Jurkiewicz, Loll '10]
 - Short-scale spectral dimension in (2+1)d [DB, Henson '09]
 - Large-scale geometry (stretched sphere) in (2+1)d [DB, Henson '09]
 - Minisuperspace action with positive kinetic term (in (2 + 1)d, compared to kinetic term of moduli [Budd - '11])
 - Quantum Hamiltonian in (1+1)d [Ambjorn, Glaser, Sato, Watabiki '13]

An HL-inspired minisuperspace model

[DB, Henson -'14]

• HL gravity (with constant lapse N):

$$S_{(2+1)-\text{HL}} = \frac{1}{16\pi G} \int dt \, d^2 x N \sqrt{g} \left\{ \sigma (\lambda \, K^2 - K_{ij} K^{ij}) + b \, R - \gamma \, R^2 \right\}$$

+ volume constraint: $V_3=\int dt\, d^2x N\sqrt{g}$

• Minisuperspace reduction: $g_{ij} = \phi^2(t) \hat{g}_{ij}$ ($V_2(t) = \int d^2x \sqrt{g} = 4\pi \phi^2(t)$)

$$\Rightarrow S_{(2+1)-\min} = \frac{1}{2\kappa^2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \left\{ \dot{\phi}^2 - \frac{\xi}{\phi^2} + b' \right\}$$

+ volume constraint: $\mathcal{V} \equiv V_3 - 4\pi N \int dt \, \phi^2(t) = 0$

+ kinematic constraint: $\phi(t) \ge \epsilon$

Competing effects

$$Z_{(2+1)-\min} = \int_{\phi(t)>\epsilon} \mathcal{D}\phi(t)\,\delta(\mathcal{V})\,\exp\left\{-\frac{1}{2\kappa^2}\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}}dt\left[\dot{\phi}^2 - \frac{\xi}{\phi^2}\right]\right\}$$

In the limit $\kappa \to 0$ we expect the partition function (and the observables) to be dominated by those configurations that minimize the action

 Kinetic term favors constant solutions ⇒ for ξ = 0, taking into account volume constraint we have

$$\bar{\phi}_0(t) = \sqrt{\frac{V_3}{4\pi\tau}}$$

as we saw before

• For $\xi > 0$, potential favors configurations saturating the kinematic constraint (i.e. $\phi(t) = \epsilon$)

 \Rightarrow we might expect the dominance of configurations with a stalk saturating the kinematic constraint, and a droplet taking care of the missing volume (in fact, flipping the sign of the kinetic term, a delta function would do the job)

(Note: due to unboundedness of the action for $\xi > 0$, dominant configuration is not necessarily a saddle point)

Local minima

e.o.m.:
$$\ddot{\phi} + \omega^2 \phi - \frac{\xi}{\phi^3} = 0$$

(ω is a Lagrange multiplier to enforce volume constraint)

It is exactly solvable (isotonic oscillator):

$$\phi_0(t) = \frac{1}{\omega A} \sqrt{(\omega^2 A^4 - \xi) \cos^2(\omega t + \psi) + \xi}$$

Local minima

e.o.m.:
$$\ddot{\phi} + \omega^2 \phi - \frac{\xi}{\phi^3} = 0$$

(ω is a Lagrange multiplier to enforce volume constraint)

It is exactly solvable (isotonic oscillator):

$$\phi_0(t) = \frac{1}{\omega A} \sqrt{(\omega^2 A^4 - \xi) \cos^2(\omega t + \psi) + \xi}$$

For $\frac{\pi}{\omega}=\frac{\tau}{n},\,n\in\mathbb{N}$ (and solving the volume constraint):

$$\Rightarrow \quad S_{(2+1)-\min}[\phi_0(t)] = \frac{n\pi}{8\kappa^2} \left(\frac{nV_3}{N\tau^2} - 8\sqrt{\xi}\right)$$

However, for $\phi(t)=\xi^{1/4}/\sqrt{\omega}\equiv\bar{\phi}_0$ and $\omega=4\pi N\tau\sqrt{\xi}/V_3$:

$$S_{(2+1)-\min}[\bar{\phi}_0] = -\frac{2\pi N\tau^2 \xi}{\kappa^2 V_3} \le S_{(2+1)-\min}[\phi_0(t)]$$

Absolute minima

$$\bar{\phi}(t) = \begin{cases} \sqrt{\left(\frac{\tilde{V}_3\bar{\omega}}{2\pi^2N} - \epsilon^2\right)\cos^2\left(\bar{\omega}t\right) + \epsilon^2}, & \text{for } t \in \left[-\frac{\pi}{2\bar{\omega}}, +\frac{\pi}{2\bar{\omega}}\right], \\ \epsilon, & \text{for } t \in \left[-\frac{\tau}{2}, -\frac{\pi}{2\bar{\omega}}\right) \cup \left(+\frac{\pi}{2\bar{\omega}}, +\frac{\tau}{2}\right] \end{cases}$$

$$\bar{\omega} \equiv \omega(A_{\epsilon}) = \left(\frac{2\pi^2 N \sigma^2}{\tilde{V}_3}\right)^{\frac{1}{3}}, \quad \sigma^2 = \frac{\xi}{\epsilon^2}$$
$$\tilde{V}_3 = V_3 - 4\pi N \epsilon^2 \tau + \left(2\pi^2\right)^{\frac{2}{3}} \left(\frac{V_3}{\sigma^2}\right)^{\frac{1}{3}} \epsilon^2 + O(\epsilon^4)$$

The action evaluates to

$$S_{(2+1)-\min}[\bar{\phi}(t)] = \frac{1}{\kappa^2} \left(-\frac{\xi\tau}{2\epsilon^2} + \frac{3}{4} \left(\frac{\pi V_3 \xi^2}{2N\epsilon^4} \right)^{\frac{1}{3}} - \pi\sqrt{\xi} + \frac{1}{2} \left(\frac{\pi^5 N\epsilon^4 \xi}{4V_3} \right)^{\frac{1}{3}} \right)$$

which is smaller than for other configurations, for $\epsilon^2 \ll V_3/\tau.$

The droplet/condensate is stable in a finite interval: $\tau_- < \tau < \tau_+$

• $\frac{\pi}{\omega} < \tau \Rightarrow$ there is a minimal value of τ below which the droplet is unstable:

$$\tau_{-} \simeq \left(\frac{\pi V_3 \epsilon^2}{2N\xi}\right)^{\frac{1}{3}}$$

 \Rightarrow constant configurationn dominates for $\tau < \tau_{-}$ (consistent with [Ambjørn, Jurkiewicz, Loll - '00; Cooperman, Miller - '13])

• $S_{(2+1)-\min}[\bar{\phi}_0] \sim -\tau^2$ vs. $S_{(2+1)-\min}[\bar{\phi}(t)] \sim -\tau$

 \Rightarrow there is a maximal value of au above which the constant solution is favourable

and $\tau_+ < \tau_{\max} \equiv V_3/(4\pi N\epsilon^2)$

(for $\tau > \tau_{\max}$ the constraint $\phi(t) > \epsilon$ is incompatible with the volume constraint)

Fitting the data

Simulations of the BIB model

Minimization analysis is far from rigorous, and it relies on several assumptions \Rightarrow comparison to direct Monte Carlo simulations of the BIB model is important

$$g(m_j, m_{j+1}) = \exp\left\{-\frac{2(m_{j+1} - m_j)^2}{m_{j+1} + m_j}b_1 + \frac{2}{m_{j+1} + m_j}b_2\right\}$$

Phase diagram for system with T = 80, M = 4000: droplet (red triangles), localized (yellow squares), antiferromagnetic (blue pentagons), correlated fluid (green hexagons).

Typical configurations for the various phases:

Mean value $\langle m_i \rangle$ as a function of i, for samples in the correlated phase and in the droplet phase:

Further hints for the unbounded potential?

In [Benedetti, Loll, Zamponi - '07] we obtained the following continuum Hamiltonian from a very special model of (2+1)d CDT:

$$\hat{H} = -\frac{\partial}{\partial V_2} V_2^{3/2} \frac{\partial}{\partial V_2} - \frac{1}{16} \frac{1}{V_2^{1/2}} + \Lambda V_2$$

to be compared with the Hamiltonian of our HL minisuperspace model:

$$\hat{H} = -G\left(\frac{\partial}{\partial V_2}V_2\frac{\partial}{\partial V_2} + \gamma\frac{1}{V_2}\right) + \Lambda V_2$$

Notice: roughly the same for $G \rightarrow V_2^{1/2}$

Maybe possible to obtain missing G from the more realistic model? (from ABAB matrix model) Or maybe just a problem with scaling G canonically? (\Rightarrow Lifshitz scaling?)

Of course just a speculation, but presence of a term singular at $V_2 = 0$ and seemingly unbounded from below is very suggestive!

Conclusions

- CDT is a nonperturbative lattice approach to quantum geometry, and a rather unique case in which the minisuperspace model can be derived as effective description, not as approximation
- In (2+1)d the GR-inspired minisuperspace model has no potential term for the spatial volume
 - \Rightarrow the droplet phase is never favorable
- HL-inspired model succeeds very well in reproducing the spacetime condensation of (2+1)d CDT!
- $\bullet\,$ In naive continuum limit, the coupling of R^2 goes to zero, but a nontrivial limit might be reached if a Lifshitz point exists
- It would be interesting to study volume fluctuations in CDT and directly extract the effective action from there (⇒ unicity of the effective action)