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Introduction — effective dynamics of observables

Observables are a long-standing challenge in Quantum Gravity:

Diffeomorphism invariance = non-local observables [ d%z./g O(z)

Causal Dynnamical Triangulationns (CDT) have a built-in foliation
= time-dependent observables O(t) are possible J

Questions:

@ s it possible to describe dynamics of O(¢) with an effective theory?
(Ot)) = /Dgwe*Slglo(t) k) /DOe’Seff[O]O(t)
@ If so, can we infer S[g] from knowledge of S [O]?

(useful if we can construct continuum limit of Seg[O] but not of S[g])

This talk:

Seff for the spatial volume of CDT in 2 + 1 dimensions
=> connection to Hofava-Lifshitz gravity
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Outline

@ Lightning overview of CDT and its results

@ 241 dimensional CDT and its volume profiles

@ Condensation from Ho¥ava-Lifshitz minisuperspace model

3/25



Causal Dynamical Triangulations in a nutshell

@ A lattice approach to the nonperturbative quantization of gravity
= discretization of spacetime with /attice cutoff = a

@ Dynamical spacetime = dynamical lattice:
random d-dimensional triangulations
(in Euclidean signature, e~ weigth = Monte Carlo simulations)
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Causal Dynamical Triangulations in a nutshell

@ A lattice approach to the nonperturbative quantization of gravity
= discretization of spacetime with /attice cutoff = a

@ Dynamical spacetime = dynamical lattice:
random d-dimensional triangulations
(in Euclidean signature, e~ weigth = Monte Carlo simulations)

@ Experience from the past (DT): no classical geometry and no 24 order phase transition for
most general class of geometries
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Causal Dynamical Triangulations in a nutshell

@ A lattice approach to the nonperturbative quantization of gravity
= discretization of spacetime with /attice cutoff = a

@ Dynamical spacetime = dynamical lattice:
random d-dimensional triangulations
(in Euclidean signature, e~ weigth = Monte Carlo simulations)

@ Experience from the past (DT): no classical geometry and no 214 order phase transition for
most general class of geometries

@ Restricting the ensemble of geometries to those with a regular foliation both features are
obtained =- Causal Dynamical Triangulations

[Ambjgrn, Loll - 1998 (d = 2); Ambjgrn, Jurkiewicz, Loll - 2000,... (d > 2)
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The model

The statistical model of CDT is defined by the partition function

_ —rgN, 1 Kdg—aoNg_o — —kgNg 7 .
Z(kd, Kd—2) = E e~ rdd E o e = E e "N Z(Ng, kq—2)
Ng Ng

TNy,

@ N, = number of n-dimensional simplices (n =0,...,d)

@ N, = are constrained by topological relations
= only 1 independent variable in 1 4+ 1 dimensions,
and only 2 independent variables in 2 + 1 and 3 + 1 dimensions

@ In CDT we distinguish time-like objects (connecting leaves)
and space-like objects (on a single leaf)

= one more free variable in 3 + 1 dimensions (with coupling A)

@ Monte Carlo simulations:
(1) koNp instead of kg_oNg_o;
(2) constant volume (canonical ensemble);
(3) increase Ny and look for scaling
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Emergence of a macroscopic universe

Phase diagram of CDT: [Ambjgrn, Jurkiewicz, Loll, Gérlich, Jordan]
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Phase Cyg:

o dH ~ 4
@ from S! x S3 to an effective S*

@ spontaneous breaking of time translation

& “condensation of spacetime”
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Volume profile in 3+1 dimensions

Characteristic features of the condensate:
macroscopic blob/droplet surrounded by microscopic stalk
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In the bulk of the macroscopic universe:
3/4 .
. 3N4/ 3 7 . .
(N3(2)) = cos 171 | = emergence of a classical evolution
4s9 soN,
(volume profile of a 4-sphere) [Ambisrm, Gorlich, Jurkiewicz, Loll - '07]
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GR minisuperspace

@ The cos (t) profile is obtained also as a solutionn of a GR-inspired minisuperspace model

(9i5 = ¢(t)* Gij = Va(t) = [ d®\/g o< 6(1)°)

V2(t) 1/3
bYe] / ( (t) (t)>

+ constraint: V; = f_zl dtVs(t)
3

= /DV36 <V4 —[? dth(t)) e=S
-3

S =r (N3(i+ 1) = N3(4))? ey NL/3
Z( N3 (i) el ()>

— Reconstructed directly from the CDT data (inside the droplet) by studying correlators
(N3(i)N3(5)) [Ambiorn et al. "08-12-13]

@ Discretization:
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Condensation from Balls-in-Boxes model

GR-inspired minisuperspace model explains not only the bulk evolution, but also the stalk, as
well as occurrence of other phases [Bogacz, Burda, Waclaw - 12
= Balls-in-Boxes model = discrete path integral with a constraint

M M T
ZBIB(T7 M) = Z Z ‘5M»Ei m; H g(TILj,TTLj+1)
M1=Mmin  MT=Mmin Jj=1
s .
ST LT
{m;}
{ 2(7n—n)2 m1/3+n1/3}
g(m,n) = exp{ —cy — co =
m 4+ n 2

uncorrelated fluid
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CDT in 241 dimensions

(2 4 1)-dimensional CDT is not much easier than (3 + 1)d
(but it has one less coupling in the lattice action)

K& (k)

-
kg" ko

[Ambjgrn, Jurkiewicz, Loll - '00]

= again an extended phase (dy ~ 3) with a condensation phenomenon
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Volume profile in 241 dimensions e v
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Volume profile in 2+1 dimensions

DB, Henson -'14]
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Volume profile in 241 dimensions e v
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Failure of the GR-inspired minisuperspace model — 1

@ No potential for Va(¢) in GR action:

Vs (t)
S(2+1)d mini — QG/% (t)

+ constraint: V3 = [ 2, dtVa(t)
2

@ Solution:

2 ((2x2At
Vz(t):{ACOS (3551) fortel- 47TA’+47rA

0, fort e [—Z, 4‘,/,314) (+471—A7+ J
@ On-shell action:  S(241)d—mini[V2] = %
minimized by A = 0, but this violates 4‘;—3A <I=>A= 2‘,/?
= Siyna-minilV2i Al = gg >0

@ However:
S241)d—mini[V2(t) = V3/7] =0
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Failure of the GR-inspired minisuperspace model — 2

@ Constant configuration is the absolute minimum!

@ Same model as in (3+1)d but with ca =0
= Correlated fluid in [Bogacz, Burda, Waclaw - '12]

correlated fluid

uncorrelated fluid

@ Also: same model as in (1+1)d CDT ...
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CDT in 141 dimensions

(1 4 1)-dimensional CDT

is precisely a BIB model, with m; = [; giving the length of the spatial slice,
and (for open boundary conditions)
(i 4+ Lig1)!

lz' li+1!
It basically counts the number of ways we can place I;41 balls in [; + 1 boxes. Therefore the
(1 4 1)-dimensional model of CDT is a BIB model whose reduced transfer matrix is defined by
an auxiliary BIB model.

g(ls, liy1) =

The model is exactly solvable [ambigm, Lol - ‘98] and it has no droplet phase
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CDT in 141 dimensions

(s +1ig1)!

1. L _
g(lisliv1) Il lig1!

Effective continuum action:

=

@ No condensation

~ olitligre

(li,+1*lqz)2

Lit+liya

@ The action is not a reduction of Einstein-Hilbert (topological in d = 2),
but of Horava-Lifshitz gravity in 1 4+ 1 dimensions [Ambjorn, Glaser, Sato, Watabiki - '13]
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Ho¥ava-Lifshitz gravity (and CDT)

@ HL gravity: a dynamical theory of geometries with a preferred foliation
= Reduced symmetry: foliation-preserving diffeomorphisms Diff = (M)

@ Evidence for a CDT-HL relation comes from

@ Presence of a foliation

@ Analogies in phase diagram (CDT in (3 4 1)d) [Ambjorn, Goerlich, Jurkiewicz, Loll - '10]
@ Short-scale spectral dimension in (2 + 1)d D&, Henson - 09]

o Large-scale geometry (stretched sphere) in (2 + 1)d (0B, Henson - '09]

@ Minisuperspace action with positive kinetic term
(in (2 + 1)d, compared to kinetic term of moduli [sudd - 1)

@ Quantum Hamiltonian in (1 + 1)d [Ambjomn, Glaser, Sato, Watabiki - 13
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An HL-inspired minisuperspace model e v e

@ HL gravity (with constant lapse N):
1 iy
S24+1)—HL = el /dtdQIN\/ﬁ {o(NK? — K;; K7) + bR — v R?}

+ volume constraint: V3 = fdt deN\/E

@ Minisuperspace reduction:  g;; = ¢%(t) §i;; (Va(t) = [d%z/g = 4m¢?(t))

1 (2 . 13
= S(2+1)—mini=ﬁ/77dt {¢2*?+bl}

2
+ volume constraint: V = V3 — 47N [dt¢2(t) =0

+ kinematic constraint: ¢(t) > €
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Competing effects

1 (3 )
Z(241)—mini = /¢ ., DAV exp{—w [ ae|o - 52]}

In the limit kK — 0 we expect the partition function (and the observables) to be dominated by
those configurations that minimize the action

@ Kinetic term favors constant solutions = for £ = 0, taking into account volume constraint
we have
_ V3
do(t) =4/ —
4T
as we saw before

@ For £ > 0, potential favors configurations saturating the kinematic constraint
(ie. 6(t) =€)

=- we might expect the dominance of configurations with a stalk saturating the kinematic
constraint, and a droplet taking care of the missing volume
(in fact, flipping the sign of the kinetic term, a delta function would do the job)

(Note: due to unboundedness of the action for £ > 0, dominant configuration is not necessarily a
saddle point)
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Minimization of the action — 1

Local minima

, £
e.o.m.: ¢+w2¢— g =0

(w is a Lagrange multiplier to enforce volume constraint)

It is exactly solvable (isotonic oscillator):

Bo(t) = — /(@241 — ) cos? i + ) + €
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Minimization of the action — 1

Local minima

, £
e.o.m.: ¢+w2¢— g =0

(w is a Lagrange multiplier to enforce volume constraint)

It is exactly solvable (isotonic oscillator):

Bo(t) = — /(@241 — ) cos? i + ) + €

s T

For T = T, n € N (and solving the volume constraint):

V-
= Set1)—minil¢o(t)] = % (% - 8\/5)

However, for ¢(t) = £1/4/\/w = ¢ and w = 4xNT/E/V3:

2 NT2¢

S(2+1)7mini [‘EO] == K2Va

< S(2+1)7mini [¢0 (t)]
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Minimization of the action — 2

Absolute minima

Vi@ — ™ s
3(t) = \/(275’21\1_62) cos? (wt) +-€2, fort € [—55,+55],
€, fort € [, —55) U (+55,+75]

1
27r2Ncr2)§ s £
_— , o°=

s=w = (7

1
N 2 /Va\3
Vs = V3 — dnNe2r + (272) 3 (g%) 240

The action evaluates to

2\ % AT AEN 5
(o 1) B0)] = < o (Br) - v (M 5))

K2 | 22 T 4\ 2Net 4Vs

which is smaller than for other configurations, for €2 < Vs/T.
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Minimization of the action — 3

The droplet/condensate is stable in a finite interval: T <7< T} J

) % < T => there is a minimal value of 7 below which the droplet is unstable:

1
wV3e? 3
T X~
2N¢

= constant configurationn dominates for 7 < 7_
(consistent with [ambjsrn, Jurkiewicz, Lol - '00; Cooperman, Miller - '13])

@ Siot1)—minil¢o] ~ =72 Vs, Sio1 1) mini[@(t)] ~ —7

= there is a maximal value of 7 above which the constant solution is favourable

and 74 < Tmax = V3/(4mNe2)

(for 7 > Tmax the constraint ¢(t) > € is incompatible with the volume constraint)
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Fitting the data
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Simulations of the BIB model E—

Minimization analysis is far from rigorous, and it relies on several assumptions
= comparison to direct Monte Carlo simulations of the BIB model is important

2(mj1 —my)? b2}
M1 +my M1+ my

g(mj, mjt1) = exp {*

phase diagram

Phase diagram for system with T"= 80, M = 4000: droplet (red triangles), localized (yellow
squares), antiferromagnetic (blue pentagons), correlated fluid (green hexagons).
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Phases

Typical configurations for the various phases:
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Phases

[DB, Ryan

16]

Mean value (m;) as a function of ¢, for samples in the correlated phase and in the droplet phase:
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Further hints for the unbounded potential?

In [Benedetti, Loll, Zamponi - '07] we obtained the following continuum Hamiltonian from a very special
model of (2+ 1)d CDT:

A 0 _3/2 0 1 1
H=-2y¥* 2 _ — 1AV
Ve 2 Ve 16y AV

to be compared with the Hamiltonian of our HL minisuperspace model:

N o o 1
A=-c(Zw2 vy )+av
<3V2 2oV, ”Vz) AV

Notice: roughly the same for G — V21/2

Maybe possible to obtain missing G from the more realistic model? (from ABAB matrix model)
Or maybe just a problem with scaling G canonically? (= Lifshitz scaling?)

Of course just a speculation, but presence of a term singular at V2 = 0 and seemingly
unbounded from below is very suggestive!
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Conclusions

@ CDT is a nonperturbative lattice approach to quantum geometry, and a rather unique case
in which the minisuperspace model can be derived as effective description, not as
approximation

@ In (2+41)d the GR-inspired minisuperspace model has no potential term for the spatial
volume

= the droplet phase is never favorable

@ HL-inspired model succeeds very well in reproducing the spacetime condensation
of (24+1)d CDT!

@ In naive continuum limit, the coupling of R? goes to zero, but a nontrivial limit might be
reached if a Lifshitz point exists

@ It would be interesting to study volume fluctuations in CDT and directly extract the
effective action from there (= unicity of the effective action)
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