

MENU 1

1. Review of (2Dim) DT
a. What is DT (Dynamical Triangulation) ?
b. DT expressed by string field theory
2. Review of (2Dim) CDT
a. What is CDT (Causal Dynamical Triangulation) ?
b. CDT expressed by string field theory
3. DT and CDT with W-algebra
[Ambjørn, Watabiki: arXiv:1505.04353]
a. The mode expansion of DT and reduced \mathscr{W}-algebra
b. The mode expansion of CDT and \mathscr{W}-algebra
c. Emergence of Space (-Time \& Death of the World)

MENU 2

4. High-dimensional CDT with \boldsymbol{W}-algebra
[Ambjørn, Watabiki: arXiv:1703.04402]
a. High-dimensional CDT with \boldsymbol{w}-algebra
b. (New \mathscr{W}-algebra with Jordan algebra)
c. Tangent and Hyperbolic Tangent expansions
d. Knitting mechanism and Vanishing cosmo. const.
5. Accelerating Universe by Fractal Strucure
[Ambjørn, Watabiki: arXiv:1709.06497]
a. The modified Friedmann equation
b. Accelerating Universe by Fractal Structure
c. Predictions
6. Summary and Discussions

1. Review of DT

a. What is $(2 \mathrm{dim})$ DT (Dynamical Triangulation) ?

- Definition of DT

Construction of lattice by "equilateral triangles"

Each triangle is the same size and equilateral.

Curvature of site i is $\sqrt{g} R_{i}=\left(6-q_{i}\right) \theta$ (curvature exists only on sites)
q_{i} is the nr. of triangles together to the site i

- Partition function of DT

Quantum gravity is the path integral of metric $g_{\mu \nu}$ (μ is the cosmological constant)

$$
Z=\int D g_{\mu \nu} e^{\int \mathrm{d}^{2} x \sqrt{g}\left(-\frac{R}{16 \pi G}+\mu\right)}
$$

The metric $g_{\mu \nu}$ expresses various curved spaces, so the path integral is the summation of all kinds of triangulated spaces.

$$
Z=\sum_{\text {summation of triangulated lattices }} N^{\chi} \kappa^{N_{2}} \quad\left\{\begin{array}{l}
N=\mathrm{e}^{1 / 4 G} \kappa=\mathrm{e}^{\varepsilon^{2} \mu} \\
N_{2}=\frac{1}{\varepsilon^{2}} \int \mathrm{~d}^{2} x \sqrt{g}
\end{array}\right.
$$

$$
\varepsilon^{2} \text { is the area of one triangle. }
$$

(κ is cosmological constant at lattice level, N_{2} is nr . of triangles)

- DT and Amplitudes (Discrete Laplace transf.)

Definition of Amplitudes
The partition fun with general topology is obtained by summing up the lattice with the following topology

$$
W\left(x_{1}, \ldots, x_{n}\right):=N^{n-2} \sum_{\ell_{1}=0}^{\infty} \cdots \sum_{\ell_{n}=0}^{\infty} x_{1}^{-\ell_{1}-1} \cdots x_{n}^{-\ell_{n}-1} W\left(\ell_{1}, \ldots, \ell_{n}\right)
$$

W is the partition fun. fixing the topology $\binom{$ Surface with n holes }{ and several handles }

ℓ_{k} is the number of links at the k-th boundary.

Loop equation

One obtains the loop equation for disk amplitude.

$$
\begin{aligned}
& \int_{C} \frac{\mathrm{~d} z}{2 \pi i} \frac{V^{\prime}(z)}{x-z} W(z)=W^{2}(x)+\frac{1}{N^{2}} W(x, x) \\
& \text { where } V^{\prime}(z)=z-\kappa z^{2}
\end{aligned}
$$

Continuum limit of Amplitudes

The continuum limit is obtained by

$$
\begin{aligned}
& t \rightarrow \frac{t}{\varepsilon^{1 / 2}} \quad x \rightarrow x_{\mathrm{c}} \mathrm{e}^{-\varepsilon \xi} \quad \kappa \rightarrow \kappa_{\mathrm{c}} \mathrm{e}^{\varepsilon^{2} \mu} \\
& t H \rightarrow \frac{t}{\varepsilon^{1 / 2}} H=T H {\left[\frac{t}{\varepsilon^{1 / 2}}=T\right] } \\
& x^{\ell} \rightarrow x_{\mathrm{c}}^{\ell} \mathrm{e}^{-\varepsilon \xi \ell}=x_{\mathrm{c}}^{\ell} \mathrm{e}^{-\xi L} \quad {[\varepsilon \ell=L] } \\
& \kappa^{N_{2}} \rightarrow \kappa_{\mathrm{c}}^{N_{2}} \mathrm{e}^{\varepsilon^{2} \mu N_{2}}=\kappa_{\mathrm{c}}^{N_{2}} \mathrm{e}^{\mu V_{2}} {\left[\varepsilon^{2} N_{2}=V_{2}\right] }
\end{aligned}
$$

The disk amplitude becomes

$$
W(\xi)=\left(\xi-\frac{\sqrt{\mu}}{2}\right) \sqrt{\xi+\sqrt{\mu}}
$$

- Geodesic Distance t

b. DT expressed by string field theory

- Creation op. and annihilation op. (L : length)

$$
\left[\Psi(L), \Psi^{\dagger}\left(L^{\prime}\right)\right]=L \delta\left(L-L^{\prime}\right) \quad \text { (others are zero) }
$$

- Free Hamiltonian and Green function

- Hamiltonian with interactions Ishibashi Kawai

$$
\begin{aligned}
H_{\mathrm{DT}}= & H_{0}-g \int \mathrm{~d} L_{1} \int \mathrm{~d} L_{2} \Psi^{\dagger}\left(L_{1}\right) \Psi^{\dagger}\left(L_{2}\right) \Psi\left(L_{1}+L_{2}\right) \\
- & G g \int \mathrm{~d} L_{1} \int \mathrm{~d} L_{2} \Psi^{\dagger}\left(L_{1}+L_{2}\right) \Psi\left(L_{1}\right) \Psi\left(L_{2}\right) \\
& -\int \frac{\mathrm{d} L}{L}\left(3 \delta^{\prime \prime}(L)-\frac{3 \mu}{4} \delta(L)\right) \Psi(L) \\
& g \text { and } G \text { are coupling constants of string theory }
\end{aligned}
$$

The fractal structure of 2dim. space leads to splitting and merging interactions of universes like a quantum cosmology.

- Spaces are not created from nothing

$$
\left.H_{\mathrm{DT}} \mid \text { phys }\right\rangle=0
$$

This condition comes from the property of geodesic distance.

- Tadpole term

$$
\rho(L)=3 \delta^{\prime \prime}(L)-\frac{3 \mu}{4} \delta(L) \begin{aligned}
& \text { The dependence } \\
& \text { of } \mu \text { comes from } \\
& \text { this spacetime. }
\end{aligned}
$$

$\uparrow t=1$

The cosmological constant μ appears.

2. Review of CDT Ambiorn Loll

a. What is (2 dim) CDT (Causal Dynamical Triangulation) ?

- Definition of CDT

Construction of lattice by "time (isosceles) triangles"
(e.g.)

All triangles are the same isosceles triangles

Two kinds of triangle appear.

The direction of time is unique and causal.

Each triangle is the same size and isosceles.

Curvature of site i is $\sqrt{g} R_{i}=\left(4-k_{i}-j_{i}\right) \theta$

k_{i} Is nr. of green links
\dot{j}_{i} Is nr. of blue links
(e.g.)

$k_{i}=j_{i}=2$
Curv. $=0$

- CDT and Green fun (Discrete Laplace transf.)

Definition of Green fun
The partition fun with cylinder topology is obtained by piling the following lattice
(e.g.)

Green function is

$$
G(x, y ; t)=\sum_{\ell=1}^{\infty} \sum_{\ell^{\prime}=1}^{\infty} x^{\ell} y^{\ell^{\prime}} G\left(\ell, \ell^{\prime} ; t\right)
$$

Continuum limit of Amplitudes
The continuum limit is obtained by

$$
t \rightarrow \frac{t}{\varepsilon} \quad x \rightarrow x_{\mathrm{c}} \mathrm{e}^{-\varepsilon \xi} \quad \kappa \rightarrow \kappa_{\mathrm{c}} \mathrm{e}^{\varepsilon^{2} \mu}
$$

The differential equation of Green fun is

$$
\begin{aligned}
& \frac{\partial}{\partial t} G(\xi, \eta ; t)=-\frac{\partial}{\partial \xi}\left(\left(\xi^{2}-\mu\right) G(\xi, \eta ; t)\right) \\
& \frac{\partial}{\partial t} G\left(L, L^{\prime}, t\right)=L\left(-\frac{\partial^{2}}{\partial L^{2}}+\mu\right) G\left(L, L^{\prime}, t\right)
\end{aligned}
$$

b. CDT expressed by string field theory

- Creation op. and annihilation op. (L : length)

$$
\left[\Psi(L), \Psi^{\dagger}\left(L^{\prime}\right)\right]=L \delta\left(L-L^{\prime}\right) \quad \text { (others are zero) }
$$

- Free Hamiltonian and Green function

$$
H_{0}=\int_{0}^{\infty} \frac{\mathrm{d} L}{L} \Psi^{\dagger}(L) L\left(-\frac{\partial^{2}}{\partial L^{2}}+\mu\right) \Psi(L)
$$

(Time reversal symmetry is not broken.)

$$
G\left(L, L^{\prime}, t\right)=\langle 0| \Psi\left(L^{\prime}\right) \mathrm{e}^{-t H_{0}} \Psi^{\dagger}(L)|0\rangle
$$

The fractal structure of CDT is weaker than that of DT, because $H_{0} \neq 0$ in CDT and $H_{0}=0$ in DT.

- Hamiltonian with interactions Ambjørn Loll Watabiki Westra Zohren

$$
\begin{aligned}
H_{\mathrm{CDT}}= & H_{0}
\end{aligned}-g \int \mathrm{~d} L_{1} \int \mathrm{~d} L_{2} \Psi^{\dagger}\left(L_{1}\right) \Psi^{\dagger}\left(L_{2}\right) \Psi\left(L_{1}+L_{2}\right) \longrightarrow \text { ? } \begin{aligned}
& \text { The interaction terms are } \\
& \text { introduced by imitating } \\
& \text { those of DT. }
\end{aligned}
$$

g and G are coupling constants of string theory
The splitting and merging interactions of universes are introduced as the same as 2 dim . DT model.

- Spaces are not created from nothing

$$
\left.H_{\mathrm{CDT}} \mid \text { phys }\right\rangle=0
$$

This is the assumption in the case of CDT.

- Tadpole term $\rho(L)=\delta(L)$

The cosmological constant μ does not appear.

- Loop equation

One obtains the loop equation for disk amplitude.

$$
\partial_{\xi}\left(-V^{\prime}(\xi) W(\xi)+W^{2}(\xi)+G g W(\xi, \xi)\right)-\frac{1}{g}=0
$$

where $V^{\prime}(\xi)=\frac{1}{g}\left(\mu-\xi^{2}\right)$

The desk amplitude becomes

$$
W(\xi)=\int_{0}^{\infty} \mathrm{d} t G\left(\xi, \ell^{\prime}=0 ; t\right)=\frac{1}{\xi+\sqrt{\mu}}
$$

3. DT and CDT with \mathcal{W}-algebra

a. The mode expansion of DT and reduced W-algebra

- Laplace transformation of the string field of DT

$$
\Psi^{\dagger}(\zeta)=\int_{0}^{\infty} d L e^{-\varsigma L} \Psi^{\dagger}(L) \quad \Psi(\zeta)=\int_{0}^{\infty} d L e^{-\varsigma L} \Psi(L)
$$

- Mode expansion of the string field of DT

$$
\begin{aligned}
& \Psi^{\dagger}(\zeta)=(\text { polynomial of } \zeta)+\zeta^{3 / 2}-\frac{3}{8} \mu \zeta^{-1 / 2}+\sum_{l=1}^{\infty} \zeta^{-l / 2-1} \phi_{l}^{\dagger} \\
& \Psi(\zeta)=\sum_{l=1}^{\infty} \zeta^{1 / 2} \phi_{l} \quad\left[\phi_{m}^{\dagger}, \phi_{n}\right]=m \delta_{m+n, 0}
\end{aligned}
$$

μ is the cosmological constant.

- Hamiltonian and 2-reduced \boldsymbol{W}-operator

$$
\begin{gathered}
H_{\mathrm{DT}}=-2 \sqrt{G} \bar{W}_{-2}^{(3)}+\frac{1}{2 \sqrt{G}} \phi_{6}^{\dagger}-\frac{3 \mu}{8 \sqrt{G}} \phi_{2}^{\dagger} \quad \begin{array}{l}
\text { Dijkgraaf } \\
\text { Verlinde Verlind } \\
\text { Ambjørn Watab }
\end{array} \\
\bar{W}_{n}^{(3)}=\frac{1}{4}\left(\frac{1}{3} \sum_{k+l+m=2 n}: \alpha_{k} \alpha_{l} \alpha_{m}:+\frac{1}{4} \alpha_{2 n}\right) \\
\begin{array}{ccc}
n\left(\lambda_{-n}-\sqrt{G} \phi_{-n}\right) & (n<0) & {\left[\alpha_{m}, \alpha_{n}\right]=m \delta_{m+n, 0}} \\
0 & (n=0) & \lambda_{5}=\frac{1}{\sqrt{G}} \quad \lambda_{1}=-\frac{3 \mu}{8 \sqrt{G}}
\end{array}
\end{gathered}
$$

b. The mode expansion of CDT and W-algebra

- Laplace transformation of the string field of DT

$$
\Psi^{\dagger}(\zeta)=\int_{0}^{\infty} d L e^{-\varsigma L} \Psi^{\dagger}(L) \quad \Psi(\zeta)=\int_{0}^{\infty} d L e^{-\varsigma L} \Psi(L)
$$

- Mode expansion of the string field of DT

$$
\begin{aligned}
& \Psi^{\dagger}(\zeta)=(\text { polynomial of } \zeta)+\zeta^{-1}+\sum_{l=1}^{\infty} \zeta^{-l-1} \phi_{l}^{\dagger} \\
& \Psi(\zeta)=\sum_{l=1}^{\infty} \zeta^{l} \phi_{l}
\end{aligned}
$$

- Hamiltonian and W-operator

$$
\begin{gathered}
H_{\mathrm{CDT}}=-g \sqrt{G} W_{-2}^{(3)}+\frac{1}{G}\left(\frac{\mu^{2}}{4 g}+\frac{1}{4 g} \phi_{4}^{\dagger}-\frac{\mu}{2 g} \phi_{2}^{\dagger}+\phi_{1}^{\dagger}\right) \\
W_{n}^{(3)}=\frac{1}{3} \sum_{k+l+m=n}: \alpha_{k} \alpha_{l} \alpha_{m}: \quad\left[\alpha_{m}, \alpha_{n}\right]=m \delta_{m+n, 0} \\
\alpha_{n}=\left\{\begin{array}{ccc}
n\left(\lambda_{-n}-\sqrt{G} \phi_{-n}\right) & (n<0) \\
v & (n=0) & \lambda_{3}=\frac{1}{6 g \sqrt{G}} \quad \lambda_{1}=-\frac{\mu}{2 g \sqrt{G}} \\
\frac{1}{\sqrt{G}} \phi_{n}^{\dagger} & (n>0) & v=\frac{1}{\sqrt{G}}
\end{array}\right.
\end{gathered}
$$

- No. of Parameters

DT models: There are 3 parameters, g, G, μ. But, g can be removed by scaling t as
(*) $t \rightarrow \frac{t}{\sqrt{g}}$
$\Psi^{\dagger} \rightarrow \frac{\Psi^{\dagger}}{\sqrt{g}}$
$\Psi \rightarrow \sqrt{g} \Psi$
$G \rightarrow \frac{G}{g}$

CDT models: There are 3 parameters, g, G, μ.
No such scaling like (*) exists
because of the non-vanishing kinetic term.
c. Emergence of Space (-Time \& Death of the World)

- DT case

$$
\begin{aligned}
& \left.H_{\mathrm{DT}} \mid \text { phys }\right\rangle=0 \\
& \left.\left.\bar{H}_{W} \mid \text { phys }\right\rangle \left.=-\frac{1}{\sqrt{G}}\left(\frac{1}{2} \phi_{6}^{\dagger}-\frac{3 \mu}{8} \phi_{2}^{\dagger}\right) \right\rvert\, \text { phys }\right\rangle \neq 0 \\
& \bar{H}_{W}:=-2 \sqrt{G} \bar{W}_{-2}^{(3)} \\
& \left.\lim _{t \rightarrow \infty}\langle 0| e^{-t H} \phi_{2 n}^{\dagger} \mid \text { phys }\right\rangle=0 \quad \text { (Disk amplitude with boundary } 2 n \text {) }
\end{aligned}
$$

\longrightarrow There is no essential difference between H_{DT} and \bar{H}_{W}

- CDT case

$$
\begin{gathered}
\left.H_{\mathrm{CDT}} \mid \text { phys }\right\rangle=0 \\
H_{W}|\mathrm{phys}\rangle=-\frac{1}{G}\left(\frac{\mu^{2}}{4 g}+\frac{1}{4 g} \phi_{4}^{\dagger}-\frac{\mu}{2 g} \phi_{2}^{\dagger}+\phi_{1}^{\dagger}\right)|\mathrm{phys}\rangle \neq 0 \\
H_{W}:=-g \sqrt{G} W_{-2}^{(3)}
\end{gathered}
$$

\longrightarrow There exists the difference between H_{CDT} and H_{W}

- The vacuum condition and The geometrical condition

- Emergence of Space

From now on, we assume the following Hamiltonian

$$
\begin{aligned}
H_{W}= & \mu \phi_{1}-2 g \phi_{2}-g G \phi_{1} \phi_{1}-\frac{1}{G}\left(\frac{\mu^{2}}{4 g}+\frac{1}{4 g} \phi_{4}^{\dagger}-\frac{\mu}{2 g} \phi_{2}^{\dagger}+\phi_{1}^{\dagger}\right) \\
& -\sum_{l=1}^{\infty} \phi_{l+1}^{\dagger} l \phi_{l}+\mu \sum_{l=2}^{\infty} \phi_{l-1}^{\dagger} l \phi_{l}-2 g \sum_{l=3}^{\infty} \phi_{l-2}^{\dagger} l \phi_{l} \\
& -g \sum_{l=4}^{\infty} \sum_{n=1}^{l-3} \phi_{n}^{\dagger} \phi_{l-n-2}^{\dagger} l \phi_{l}-g G \sum_{l=1}^{\infty} \sum_{m=\max (3-l, 1)}^{\infty} \phi_{m+-2}^{\dagger} m \phi_{m} l \phi_{l} \\
& =-g \sqrt{G} W_{-2}^{(3)}
\end{aligned}
$$

\square Is added from the viewpoint of W-symmetry.

- Emergence of Time \& Death of the World

The time and physical vacuum were born by the interaction between different Hilbert spaces of \boldsymbol{W}-algebra.
(e.g.)

$$
\left|\lambda_{3}, \lambda_{1}, v\right\rangle \Leftrightarrow\left|\lambda_{3}^{\prime}, \lambda_{1}^{\prime}, v^{\prime}\right\rangle \otimes\left|\lambda_{3}^{\prime \prime}, \lambda_{1}^{\prime \prime}, v^{\prime \prime}\right\rangle
$$

The factor in front of $W_{-2}^{(3)}$ can be removed by the redefinition of $W_{-2}^{(3)} \rightarrow \frac{1}{k^{2}} W_{-2}^{(3)}$ for $\alpha_{n} \rightarrow k^{n} \alpha_{n}$
So, the time T can be removed if all λ_{n} are zero.
If changing the values of λ_{n} is possible, the time is born and the world dies by this process.

4. High-dim. CDT with W-algebra

a. High-dimensional CDT with W-algebra

- The Hamiltonian

$$
\begin{aligned}
& H_{W}=-g \sqrt{G} W_{-2}^{(3)} \\
& \qquad W_{n}^{(3)}:=\frac{1}{3} \sum_{a, b, c} d_{a b c} \sum_{k+l+m=n}: \alpha_{k}^{(a)} \alpha_{l}^{(b)} \alpha_{m}^{(c)}: \\
& \quad\left[T_{a}, T_{b}\right]=\sum_{c} c_{a b c} T_{c} \quad\left\{T_{a}, T_{b}\right\}=\frac{4}{3} \delta_{a b}+\sum_{c} d_{a b c} T_{c}
\end{aligned}
$$

T_{a} is orthogonal real, complex Hermitian, quaternion Hermitian, or, octonion Hermitian matrix.

- In the case of 3×3 complex Hermitian matrix

$$
T_{a}[a=1,2, \ldots, 8] \text { are Gell-mann matrices. }
$$

$$
\begin{aligned}
& d_{000}=\sqrt{\frac{2}{3}} \quad d_{011}=\cdots=d_{088}=\sqrt{\frac{2}{3}} \\
& d_{118}=d_{228}=d_{338}=\frac{1}{\sqrt{3}} \quad d_{888}=-\frac{1}{\sqrt{3}} \\
& d_{448}=d_{558}=d_{668}=d_{778}=-\frac{1}{2 \sqrt{3}} \\
& d_{344}=d_{355}=\frac{1}{2} \\
& d_{146}=d_{157}=d_{256}=\frac{1}{2} \quad d_{366}=d_{377}=-\frac{1}{2} \\
& d_{247}=-\frac{1}{2}
\end{aligned}
$$

$0^{\text {th }}, 8^{\text {th }}, 3^{\text {rd }}$ spaces play a special role!
C. Tangent and Hyperbolic Tangent expansion (THT-expansion)

- Physical vacuum (we choose the following physical vacuum)

$$
\begin{aligned}
& \begin{array}{l}
(\text { e.g.) } \\
\left.\left.\left.\alpha_{-3}^{(0)} \mid \text { phys }\right\rangle=\lambda_{3}^{(0)} \mid \text { phys }\right\rangle \left.=\frac{1}{6 g \sqrt{G}} \right\rvert\, \text { phys }\right\rangle \\
\left.\left.\left.\alpha_{-1}^{(0)} \mid \text { phys }\right\rangle=\lambda_{1}^{(0)} \mid \text { phys }\right\rangle \left.=-\frac{\mu_{0}}{2 g \sqrt{G}} \right\rvert\, \text { phys }\right\rangle \\
\left.\left.\left.\alpha_{-1}^{(3)} \mid \text { phys }\right\rangle=\lambda_{1}^{(3)} \mid \text { phys }\right\rangle \left.=-\frac{\mu^{\prime}}{2 g \sqrt{G}} \right\rvert\, \text { phys }\right\rangle
\end{array}
\end{aligned}
$$

- Hamiltonian which gives 3, 4, 6, 10-dim model

$$
\begin{array}{rlrl}
H_{W}= & -\sum_{l=1}^{\infty} \phi_{l+1}^{(i) \dagger} l \phi_{l}^{(i)}-\sum_{l=1}^{\infty} \phi_{l+1}^{(I) \dagger} l \phi_{l}^{(I)}-\sum_{l=1}^{\infty} \phi_{l+1}^{(\bar{I}) \dagger} l \phi_{l}^{(\bar{I})} & & i=1,2 \\
& -\sum_{l=1}^{\infty} \phi_{l+1}^{\left(3^{\prime}\right) \dagger} l \phi_{l}^{\left(3^{\prime}\right)}-\sum_{l=1}^{\infty} \phi_{l+1}^{\left(0^{\prime}\right) \dagger} l \phi_{l}^{\left(0^{\prime}\right)} & & I=4,5 \\
& & \bar{I}=6,7
\end{array}
$$

$(2,4,8,16)+2$ spaces
are expanding and
form a compact spaces.
$2,3,5,9$ spaces are expanding toward infinity.

$$
\phi_{l}^{\left(0^{\prime} \dagger \dagger\right.} \phi_{l}^{\left(8^{\prime}\right) \dagger} \phi_{l}^{\left(3^{\prime}\right) \dagger} \text { are linear combination of } \phi_{l}^{(0) \dagger} \phi_{l}^{(8) \dagger} \phi_{l}^{(3) \dagger}
$$

$\mu_{+} \quad \mu_{+} \mu_{+}^{\prime} \mu_{+}^{\prime}$ are linear combination of $\mu_{0} \mu^{\prime}$

- Tangent and Hyperbolic Tangent expansion (THT-expansion)

The length of space is growing as

$$
L(t)=\frac{\int_{0}^{\infty} \frac{d L}{L} L G(0, L ; t)}{\int_{0}^{\infty} \frac{d L}{L} G(0, L ; t)}= \begin{cases}\frac{1}{\sqrt{\mu}} \tanh \sqrt{\mu} t & (\mu>0) \\ \frac{1}{\sqrt{-\mu}} \tan \sqrt{-\mu} t & (\mu<0)\end{cases}
$$

d. Knitting Mechanism and Vanishing Cosmo. Const.

- How to knit spaces

1. Prepare wormhole spaces (flavor " 0 ")
 whose radii do not expand bigger than Planck length.
2. Let wormhole spaces interact spaces with flavors " a " $[a=0,1, \ldots, D]$.

3. Let the wormhole spaces with infinitesimal radius and length be dominant.

4. Every coordinates $\left(x_{1}, \ldots, x_{D}\right)$ are connected by wormholes.

The set of wormholes forms a D-dimensional space.

- Knitting Mechanism (Dimension Enhancement)

0,8 , 3th space play a role of wormholes.

The set of wormholes gives toroidal space.

If the lengths of wormholes are zero,

Higher dimensional toroidal space.

These wormholes are different from the standard wormholes (Einstein-Rosen bridges).

- Matter fields change to those in high dimensions.

We assume gravitons, gauge fields, and so on appear as matter fields.

- Vanishing cosmological constant (Coleman mechanism)

0,8 , 3th space play a role of wormholes.

Summing up all possible wormholes, cosmological term disappear.

This wormholes are different from the standard wormholes, i.e. Einstein-Rosen Bridges, because $0,8,3^{\text {th }}$ space is the different dimension.
[The curvature R is necessary to be bounded below.]

5. Accelerating Univ. by Fractal Structure

a. The modified Friedmann equation

- The Hamiltonian from $-\phi_{l+1}^{\dagger} l \phi_{l}+\mu \phi_{l-1}^{\dagger} l \phi_{l}-2 g \phi_{l-2}^{\dagger} l \phi_{l}$

$$
\begin{gathered}
\mathcal{H}=-N L\left(\Pi^{2}-\mu+\frac{2 g}{\Pi}\right) \\
\{L, \Pi\}=1
\end{gathered}
$$

This term comes from the interaction with other (baby) universe.
$N(t)$ is introduced to realize the reparametrization invariance of time.
Then, we obtain

$$
\left(\frac{\dot{L}}{2 N L}\right)^{2}=\mu-\frac{2 g N L}{\dot{L}} \frac{1+3 F(x)}{(F(x))^{2}} \quad x:=-\frac{8 g L^{3}}{\dot{L}^{3}}
$$

where $F(x)$ satisfies $(F(x))^{3}-(F(x))^{2}+x=0$

- Assumption after the Big Bang

g comes from the baby universe production.
μ disappears because of the Coleman mechanism.
On the other hand, g should survives because it plays the coupling constant of wormholes.

In CDT, matter fields are considered to be integrated out as the same as in DT. So, we assume matter fields appear effectively after the Big Bang.

Assumption: $\quad \mu \rightarrow \frac{\kappa \rho}{12}$
ρ is the energy density of matter
If space dimension is 3 , we have $\kappa \rho=\frac{\text { (const.) }}{L^{3}}$

b. Accelerating Universe

- The expansion of Universe

$$
a(t):=\frac{L(t)}{L\left(t_{0}\right)} \quad\left(z(t)+1=\frac{1}{a(t)}\right)
$$

Solid line is our model
Dashed line is Λ-CDM
Dotted line is CDM

$$
q(t):=-\frac{\ddot{L}(t)}{(H(t))^{2} L(t)}
$$

The acceleration of universe is caused by the production of micro-spaces, which originates from the fractal structure of spacetime by quantum effect. Negative pressure doesn't exist because the dark energy is unnecessary.

C. Predictions

- We here assume

$$
H\left(t_{0}\right)=69\left[\mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}\right] \quad t_{0}=13.8[\mathrm{Gyr}]
$$

- We predict

$$
\begin{array}{ll}
\Omega_{\mathrm{m}}\left(t_{0}\right) \approx 0.33 & w\left(t_{0}\right) \approx-1.2 \quad q\left(t_{0}\right) \approx-0.74 \\
{\left[\Omega_{\mathrm{m}}(t):=\frac{\kappa \rho(t)}{3(H(t))^{2}}\right]} & {\left[w(t):=\frac{p(t)}{\rho(t)}=\frac{2 q(t)-1}{3\left(1-\Omega_{\mathrm{m}}(t)\right)}\right]}
\end{array}
$$

- Observed value

$$
\begin{gathered}
w\left(t_{0}\right) \approx-1.16 \pm 0.19 \quad(\text { Planck }+\mathrm{WMAP}+\mathrm{BAO}+\mathrm{SNla}) \\
\text { Cf. } w(t)=-1 \quad(\wedge-\mathrm{CDM})
\end{gathered}
$$

DISCUSSIONS

- Difference between THT-expansion and Inflation

	THT-expansion	Inflation
Horizon problem	$\boldsymbol{\iota}$	$\boldsymbol{\iota}$
Flatness problem	$\boldsymbol{\iota}(\mathrm{K}=0)$	$\boldsymbol{\iota}$
Inflaton	none	necessary
Ending	(Coleman mechanism)	(drop off from slow-roll potential)
Eternal scenario	impossible	possible

(The eternal inflation doesn't occur because Planck scale is fixed.)

Inflaton is unnecessary because our cosmological constant comes from the production of baby universes.

VERY OPTIMISTIC CONJECTURE (VOC)

- Real, Complex, Quaternion, Octonion W-algebra models generates 3, 4, 6, 10-dimensional light-cone superstring theories, respectively, as matter fields.
- Only Octonion W-algebra model has the Lorentz symmetry because 10 -dimensional light-cone superstring theory has it.
- The reason why the string theories are expected
$\longrightarrow>$ The dimensions of our model coincide with
the critical dimensions of string theories.
$>$ Our model is the high dimensional theory of
2D quantum gravity.

SUMMARY

- From WAW (W-alg. world) to Big Bang

The W-algebra world (WAW) is described by the static picture or the picture using fictitious time.

Interacting W-algebra systems

SUMMARY

- We constructed the quantum gravity theory from CDT.
- The simplest model has 2, 3, 4, 6, $\mathbf{1 0}$ dimension spacetime.

WAW
The time and the physical vacuum was born
The many spaces were born and THT-expansion started.
When the size of spaces exceeded Planck scale,
dimension enhancement occurred by Knitting mechanism.
By Coleman mechanism the cosmological constant vanished
and the space was re-heated. And then, the Big Bang started.
(The standard Big Bang scenario began)

- We also calculated physical parameters about the late expansion.

PROBLEMS

- How does the knitting and Coleman mechanism occur?
- What kind of matters (graviton, gauge fields, Higgs bosons, quarks and leptons) appear?
- How is the Lorentz symmetry realized?
- Why is the parameter g so small, and is the total energy in our universe so big, compared to the Planck scale?
- What is the mathematical structure of \boldsymbol{W}-algebra?

