2D forest fire processes near criticality and percolation with heavy-tailed impurities

Pierre Nolin¹ (CityU Hong Kong)

based on j.w. with Rob van den Berg (CWI and VU, Amsterdam)

November 9th, 2018

¹partially supported by GRF grant CityU11304718 (Research Grants Council of Hong Kong SAR)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Model for random media: Bernoulli percolation (1957)

Site percolation on $\ensuremath{\mathbb{T}}$

Vertices ("sites") are

- occupied / black (p)
- vacant / white (1 p)

- open / kept (p)
- closed / deleted (1 p)

Model for random media: Bernoulli percolation (1957)

Site percolation on $\ensuremath{\mathbb{T}}$

Vertices ("sites") are

- occupied / black (p)
- ▶ vacant / white (1 − p)

 \rightsquigarrow connectivity properties?

Percolation: phase transition as p varies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Percolation: phase transition as p varies

э

Percolation: phase transition as p varies

イロト イポト イヨト イヨト

Percolation: phase transition as p varies

イロト 不得 トイヨト イヨト

э

Near-critical regime

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Near-critical regime

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Near-critical regime

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Initially, all vertices vacant

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- ► Each vertex vacant \rightsquigarrow occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 e^{-t}$)

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- ► Each vertex vacant \sim occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)
- ► N-volume-frozen percolation: occupied clusters stop growing if their volume (= # vertices) gets ≥ N, i.e. all vertices along the outer boundary then stay vacant forever

N = 200-volume-frozen percolation on \mathbb{T} (Fig. Demeter Kiss)

N = 200-volume-frozen percolation on \mathbb{T} (Fig. Demeter Kiss)

- 3

N = 200-volume-frozen percolation on \mathbb{T} (Fig. Demeter Kiss)

(日)、

N = 200-volume-frozen percolation on \mathbb{T} (Fig. Demeter Kiss)

(日)、(四)、(E)、(E)、(E)

N = 200-volume-frozen percolation on \mathbb{T} (Fig. Demeter Kiss)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

N = 200-volume-frozen percolation on \mathbb{T} (Fig. Demeter Kiss)

<ロ> (四) (四) (三) (三) (三) (三)

N = 200-volume-frozen percolation on \mathbb{T} (Fig. Demeter Kiss)

<ロ> (四) (四) (三) (三) (三)

N = 200-volume-frozen percolation on \mathbb{T} (Fig. Demeter Kiss)

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- ▶ Each vertex vacant \sim occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)
- ► N-volume-frozen percolation: occupied clusters stop growing if their volume (= # vertices) gets ≥ N, i.e. all vertices along the outer boundary then stay vacant

forest-fire process: occupied clusters burn when one vertex ignited, i.e. all vertices become vacant instantaneously

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- ▶ Each vertex vacant \sim occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)
- ► N-volume-frozen percolation: occupied clusters stop growing if their volume (= # vertices) gets ≥ N, i.e. all vertices along the outer boundary then stay vacant
- forest-fire process: occupied clusters burn when one vertex ignited, i.e. all vertices become vacant instantaneously
 - without recovery: burnt vertices then stay vacant forever

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- ▶ Each vertex vacant \sim occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)
- ► N-volume-frozen percolation: occupied clusters stop growing if their volume (= # vertices) gets ≥ N, i.e. all vertices along the outer boundary then stay vacant
- forest-fire process: occupied clusters burn when one vertex ignited, i.e. all vertices become vacant instantaneously
 - without recovery: burnt vertices then stay vacant forever
 - with recovery: burnt vertices can become occupied again, at later birth times

▶ Relevant "macroscopic" behavior occurs around critical time t_c (defined by 1 − e^{-t_c} = p_c): instance of self-organized criticality

¹van den Berg, Kiss, N., *Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters*, Ann. Sci. ENS **51**, 1017–1084 (2018)

²van den Berg, N., *Boundary rules and breaking of self-organized criticality in 2D frozen percolation*, Elec. Comm. Probab. **22**, no. 65, 15 pp. (2017) → □ > → ⊕ → ↓ ⊕ > ↓ ⊕ →

- ▶ Relevant "macroscopic" behavior occurs around critical time t_c (defined by 1 - e^{-t_c} = p_c): instance of self-organized criticality
- ► N-volume-frozen percolation (N → ∞) now well understood¹: deconcentration phenomenon

¹van den Berg, Kiss, N., *Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters*, Ann. Sci. ENS **51**, 1017–1084 (2018)

- ▶ Relevant "macroscopic" behavior occurs around critical time t_c (defined by 1 - e^{-t_c} = p_c): instance of self-organized criticality
- ► N-volume-frozen percolation (N → ∞) now well understood¹: deconcentration phenomenon
- ▶ For forest fire processes, rate at which a cluster ignited = $\zeta \times$ volume

¹van den Berg, Kiss, N., *Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters*, Ann. Sci. ENS **51**, 1017–1084 (2018)

- ▶ Relevant "macroscopic" behavior occurs around critical time t_c (defined by 1 - e^{-t_c} = p_c): instance of self-organized criticality
- ► N-volume-frozen percolation (N → ∞) now well understood¹: deconcentration phenomenon
- For forest fire processes, rate at which a cluster ignited = ζ× volume → as ζ → 0, same behavior near t_c as N-volume-frozen percolation, with N ↔ ζ⁻¹?

¹van den Berg, Kiss, N., *Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters*, Ann. Sci. ENS **51**, 1017–1084 (2018)

- ▶ Relevant "macroscopic" behavior occurs around critical time t_c (defined by 1 - e^{-t_c} = p_c): instance of self-organized criticality
- ► N-volume-frozen percolation (N → ∞) now well understood¹: deconcentration phenomenon
- ► For forest fire processes, rate at which a cluster ignited = $\zeta \times$ volume → as $\zeta \rightarrow 0$, same behavior near t_c as *N*-volume-frozen percolation, with $N \leftrightarrow \zeta^{-1}$?
- As we will see, several difficulty arise: in particular, it requires the study of percolation with "heavy-tailed" impurities

¹van den Berg, Kiss, N., *Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters*, Ann. Sci. ENS **51**, 1017–1084 (2018)

- ▶ Relevant "macroscopic" behavior occurs around critical time t_c (defined by 1 - e^{-t_c} = p_c): instance of self-organized criticality
- ► N-volume-frozen percolation (N → ∞) now well understood¹: deconcentration phenomenon
- For forest fire processes, rate at which a cluster ignited = ζ× volume → as ζ → 0, same behavior near t_c as N-volume-frozen percolation, with N ↔ ζ⁻¹?
- ► As we will see, several difficulty arise: in particular, it requires the study of percolation with "heavy-tailed" impurities
- Note: "boundary rules" (i.e. keep vacant or not vertices along the outer boundary of a cluster that freezes / burns) do not seem to play a significant role

¹van den Berg, Kiss, N., *Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters*, Ann. Sci. ENS **51**, 1017–1084 (2018)

- \triangleright Relevant "macroscopic" behavior occurs around critical time t_c (defined by $1 - e^{-t_c} = p_c$): instance of self-organized criticality
- ▶ *N*-volume-frozen percolation ($N \rightarrow \infty$) now well understood¹: deconcentration phenomenon
- For forest fire processes, rate at which a cluster ignited = $\zeta \times$ volume \rightarrow as $\zeta \rightarrow 0$, same behavior near t_c as *N*-volume-frozen percolation, with $N \leftrightarrow \zeta^{-1}$?
- As we will see, several difficulty arise: in particular, it requires the study of percolation with "heavy-tailed" impurities
- Note: "boundary rules" (i.e. keep vacant or not vertices along the outer boundary of a cluster that freezes / burns) do not seem to play a significant role (important role when freezing by **diameter**²)

¹van den Berg, Kiss, N., Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters, Ann. Sci. ENS 51, 1017-1084 (2018)

²van den Berg, N., Boundary rules and breaking of self-organized criticality in 2D frozen percolation, Elec. Comm. Probab. 22, no. 65, 15 pp. (2017) < □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > <

Box with side length $C\sqrt{N}$ (C > 1): for t just above t_c $(1 - e^{-t_c} = p_c)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Box with side length $C\sqrt{N}$ (C > 1): for t just above t_c $(1 - e^{-t_c} = p_c)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• freezes at a time very close to $\overline{t} = \overline{t}(C) := \theta^{-1}(\frac{1}{C^2})$

Box with side length $C\sqrt{N}$ (C > 1): for t just above t_c $(1 - e^{-t_c} = p_c)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- freezes at a time very close to $\overline{t} = \overline{t}(C) := \theta^{-1}(\frac{1}{C^2})$
- leaves holes with volume $\lesssim L(\bar{t})^2 \ll N$

Box with side length $C\sqrt{N}$ (C > 1): for t just above t_c $(1 - e^{-t_c} = p_c)$

- freezes at a time very close to $\overline{t} = \overline{t}(C) := \theta^{-1}(\frac{1}{C^2})$
- leaves holes with volume $\lesssim L(\bar{t})^2 \ll N$
- nothing else freezes: only 1 giant cluster freezes, "spanning" the box
Proposition (van den Berg, N., 2014) Run the process in a box with side length $C\sqrt{N}$ (C > 1):

$$\mathbb{P}_{N}^{B_{C\sqrt{N}}}(0 \text{ freezes}) \xrightarrow[N \to \infty]{} \frac{1}{C^{2}}.$$

 \rightarrow Full-plane process: can we simply let $C \rightarrow \infty$, and exchange limits?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition (van den Berg, N., 2014) Run the process in a box with side length $C\sqrt{N}$ (C > 1):

$$\mathbb{P}_{N}^{B_{C\sqrt{N}}}(0 \text{ freezes}) \xrightarrow[N \to \infty]{} \frac{1}{C^{2}}.$$

 \rightarrow Full-plane process: can we simply let $C \rightarrow \infty$, and exchange limits?

No! \sqrt{N} = first scale $m_1(N)$ in a sequence $(m_k(N))_{k\geq 1}$ of exceptional scales

$$m_k(N) = N^{o_k+o(1)},$$

with $\delta_1 = \frac{1}{2}$, and $\delta_{k+1} = \frac{1}{2} + \frac{5}{96}\delta_k$ $(\delta_k \nearrow \delta_\infty = \frac{48}{91}).$

In a box with side length m = L(t) $(t = t(N) \searrow t_c)$: for t' just above t,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In a box with side length m = L(t) $(t = t(N) \searrow t_c)$: for t' just above t,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• freezes at a time very close to \hat{t} s.t. $L(t)^2\theta(\hat{t}) = N$,

In a box with side length m = L(t) $(t = t(N) \searrow t_c)$: for t' just above t,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- freezes at a time very close to \hat{t} s.t. $L(t)^2 \theta(\hat{t}) = N$,
- leaves a hole around 0 with diameter $\asymp L(\hat{t})$,

In a box with side length m = L(t) $(t = t(N) \searrow t_c)$: for t' just above t,

- freezes at a time very close to \hat{t} s.t. $L(t)^2\theta(\hat{t}) = N$,
- leaves a hole around 0 with diameter $\asymp L(\hat{t})$,

•
$$\hat{m} = L(\hat{t})$$
 s.t. $m^2 \pi_1(\hat{m}) \asymp N$.

Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.

Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.

From $m_{k+1}^2\pi_1(m_k) symp N$, we obtain

$$m_k(N) = N^{\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{91}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.

From $m_{k+1}^2\pi_1(m_k) symp N$, we obtain

$$m_k(N) = N^{\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = rac{48}{91}$$

Note: for previous reasoning, need to be "on the edge of supercriticality", for $\hat{t} - t_c \gg t - t_c$ ($\Leftrightarrow L(\hat{t}) = \hat{m} \ll L(t) = m$)

Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.

From $m_{k+1}^2\pi_1(m_k) symp N$, we obtain

$$m_k(N) = N^{\delta_k + o(1)}, \quad ext{with } \delta_k
earrow \delta_\infty = rac{48}{91}$$

Note: for previous reasoning, need to be "on the edge of supercriticality", for $\hat{t} - t_c \gg t - t_c$ ($\Leftrightarrow L(\hat{t}) = \hat{m} \ll L(t) = m$)

 \rightarrow condition $m^2\pi_1(m) \ll N$, i.e.

$$m \ll m_{\infty}(N) = N^{\delta_{\infty} + o(1)}$$

Exceptional scales: for all $k \ge 1$,

$$m_k(N) = N^{\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{91}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Exceptional scales: for all $k \ge 1$,

$$m_k(N) = N^{\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = rac{48}{91}$$

Theorem (van den Berg, N., 2014)

For N-volume-frozen percolation in box $B_{m(N)}$: as $N \to \infty$,

clusters in final configuration:

macroscopic (frozen / non-frozen) microscopic (volume O(1))

mesoscopic (volume $N^{\delta+o(1)}$) (0 < δ < 1)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Forest fire process without recovery, rate $\zeta=0.01$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

We can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For m = L(t), $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c) L(t)^2 \theta(\hat{t}) = 1$$

・ロト・日本・モト・モート ヨー うへで

We can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For m = L(t), $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c) L(t)^2 \theta(\hat{t}) = 1$$

Since $(\hat{t} - t_c)L(\hat{t})^2 \pi_4(L(\hat{t})) \asymp 1$, $\hat{m} = L(\hat{t})$ satisfies $\zeta \cdot m^2 \pi_1(\hat{m}) \asymp \hat{m}^2 \pi_4(\hat{m})$

We can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For m = L(t), $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c) L(t)^2 \theta(\hat{t}) = 1$$

Since $(\hat{t} - t_c)L(\hat{t})^2\pi_4(L(\hat{t})) \approx 1$, $\hat{m} = L(\hat{t})$ satisfies $\zeta \cdot m^2\pi_1(\hat{m}) \approx \hat{m}^2\pi_4(\hat{m})$

 \rightarrow predicts exceptional scales again, with more complicated formulas:

$$m_k(\zeta) = \zeta^{-\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{55}$$

We can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For m = L(t), $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c) L(t)^2 \theta(\hat{t}) = 1$$

Since $(\hat{t} - t_c)L(\hat{t})^2 \pi_4(L(\hat{t})) \approx 1$, $\hat{m} = L(\hat{t})$ satisfies $\zeta \cdot m^2 \pi_1(\hat{m}) \approx \hat{m}^2 \pi_4(\hat{m})$

 \rightarrow predicts exceptional scales again, with more complicated formulas:

$$m_k(\zeta) = \zeta^{-\delta_k + o(1)}, \quad ext{with } \delta_k
earrow \delta_\infty = rac{48}{55}$$

But **significant difficulty**: many fires before time t_c , larger and larger ("heavy-tailed", in some sense)

We can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For m = L(t), $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c) L(t)^2 \theta(\hat{t}) = 1$$

Since $(\hat{t} - t_c)L(\hat{t})^2 \pi_4(L(\hat{t})) \asymp 1$, $\hat{m} = L(\hat{t})$ satisfies $\zeta \cdot m^2 \pi_1(\hat{m}) \asymp \hat{m}^2 \pi_4(\hat{m})$

 \rightarrow predicts exceptional scales again, with more complicated formulas:

$$m_k(\zeta) = \zeta^{-\delta_k + o(1)}, \quad ext{with } \delta_k
earrow \delta_\infty = rac{48}{55}$$

But **significant difficulty**: many fires before time t_c , larger and larger ("heavy-tailed", in some sense)

 \rightarrow we have to understand the effect of these "impurities" on the connectedness of the lattice

"impurities" created by fires before time $t_c - \varepsilon$ ($\varepsilon = 0.1$)

(日) (個) (目) (目) (目) (目)

Connectedness of the forest at time $t_c - \varepsilon$?

Connectedness of the forest at time $t_c - \varepsilon$?

▶ introduce $m = L(t_c - \varepsilon)$ (typically, $\varepsilon = \varepsilon(\zeta) \rightarrow 0$ as $\zeta \rightarrow 0$)

Connectedness of the forest at time $t_c - \varepsilon$?

▶ introduce $m = L(t_c - \varepsilon)$ (typically, $\varepsilon = \varepsilon(\zeta) \rightarrow 0$ as $\zeta \rightarrow 0$)

▶ impurities created before time $t_c - \varepsilon$: they have diameter $\leq m$

Connectedness of the forest at time $t_c - \varepsilon$?

- ▶ introduce $m = L(t_c \varepsilon)$ (typically, $\varepsilon = \varepsilon(\zeta) \rightarrow 0$ as $\zeta \rightarrow 0$)
- ▶ impurities created before time $t_c \varepsilon$: they have diameter $\leq m$
- ► For any vertex *v*,

 $\mathbb{P}(\text{impurity with radius } \geq r \text{ created at } v) \leq \zeta \cdot r^{\alpha - 2 + o(1)} e^{-cr/m}$

with $\alpha = \frac{55}{48}$

Connectedness of the forest at time $t_c - \varepsilon$?

- ▶ introduce $m = L(t_c \varepsilon)$ (typically, $\varepsilon = \varepsilon(\zeta) \rightarrow 0$ as $\zeta \rightarrow 0$)
- ▶ impurities created before time $t_c \varepsilon$: they have diameter $\leq m$
- ▶ For any vertex *v*,

 $\mathbb{P}(\text{impurity with radius } \geq r \text{ created at } v) \leq \zeta \cdot r^{\alpha-2+o(1)}e^{-cr/m}$ with $\alpha = \frac{55}{48}$

• if $m \lesssim m_k(\zeta)$, then $\zeta \ll m^{-\beta}$ for some $\beta = \beta_k > \frac{1}{\delta_{\infty}} = \alpha$

Percolation with "heavy-tailed" impurities (parameter $m \to \infty$): for some given $\alpha < 2$ and $\beta > 0$,

Percolation with "heavy-tailed" impurities (parameter $m \to \infty$): for some given $\alpha < 2$ and $\beta > 0$,

• each vertex v is the center of an impurity with probability $\lesssim m^{-\beta}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Percolation with "heavy-tailed" impurities (parameter $m \to \infty$): for some given $\alpha < 2$ and $\beta > 0$,

• each vertex v is the center of an impurity with probability $\lesssim m^{-\beta}$

▶ radius R_v such that $\mathbb{P}(R_v \ge r) \lesssim r^{\alpha-2} e^{-cr/m}$

Percolation with "heavy-tailed" impurities (parameter $m \to \infty$): for some given $\alpha < 2$ and $\beta > 0$,

- ▶ each vertex v is the center of an impurity with probability $\leq m^{-\beta}$
- ▶ radius R_v such that $\mathbb{P}(R_v \ge r) \lesssim r^{\alpha-2} e^{-cr/m}$

Percolation with heavy-tailed impurities: random environment

"Phase diagram" as α , β vary:

For forest fires, $\alpha = \frac{55}{48}$ and $\beta > \alpha$ (most interesting regime) Note: impurities have density $m^{-(\beta-\alpha)}$, $\beta - \alpha$ arbitrarily small

Question: do the impurities have a significant effect on connectedness of the lattice?

Question: do the impurities have a significant effect on connectedness of the lattice?

► classical case: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ (" $\alpha = -\infty$ ")

Question: do the impurities have a significant effect on connectedness of the lattice?

▶ classical case: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ (" $\alpha = -\infty$ ")

ightarrow density of impurities has to stay $\lesssim m^{-3/4+o(1)}$

Question: do the impurities have a significant effect on connectedness of the lattice?

► classical case: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ (" $\alpha = -\infty$ ")

ightarrow density of impurities has to stay $\lesssim m^{-3/4+o(1)}$

• here, any
$$\beta > \alpha > \frac{3}{4}$$
 work, density $m^{-(\beta - \alpha)}$
Question: do the impurities have a significant effect on connectedness of the lattice?

► classical case: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ (" $\alpha = -\infty$ ")

ightarrow density of impurities has to stay $\lesssim m^{-3/4+o(1)}$

• here, any
$$\beta > \alpha > \frac{3}{4}$$
 work, density $m^{-(\beta-\alpha)}$

 effect on pivotal sites: quite subtle balance (impurities "help" vacant arm / "hinder" occupied arms)

Question: do the impurities have a significant effect on connectedness of the lattice?

► classical case: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ (" $\alpha = -\infty$ ")

ightarrow density of impurities has to stay $\lesssim m^{-3/4+o(1)}$

• here, any
$$\beta > \alpha > \frac{3}{4}$$
 work, density $m^{-(\beta - \alpha)}$

 effect on pivotal sites: quite subtle balance (impurities "help" vacant arm / "hinder" occupied arms)

 \rightarrow relies on inequality between arm exponents

$$\alpha_4 \le \alpha_2 + 1$$

Forest fire process at time $t_c + \varepsilon$, in a box with side length

$$M \gg m = L(t_c - \varepsilon) \asymp L(t_c + \varepsilon)$$

(typically, $m = \hat{M}$)

Conclusion:

by studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest

³Kiss, Manolescu, Sidoravicius, *Planar lattices do not recover from forest fires*, Ann. Probab. 43, 3216–3238 (2015)

- by studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest
- ➤ → we prove the existence of exceptional scales for forest fires without recovery, in a similar sense as for volume-frozen percolation (but with much more work)

- by studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest
- ➤ → we prove the existence of exceptional scales for forest fires without recovery, in a similar sense as for volume-frozen percolation (but with much more work)
- we also obtain a similar deconcentration phenomenon, and a rather complete understanding of the final configuration (*work in progress*)

- by studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest
- ➤ → we prove the existence of exceptional scales for forest fires without recovery, in a similar sense as for volume-frozen percolation (but with much more work)
- we also obtain a similar deconcentration phenomenon, and a rather complete understanding of the final configuration (*work in progress*)
- for forest fires with recovery, we expect the same behavior up to a time t_c + δ, where δ > 0 universal (using also as a technical input: result by Kiss-Manolescu-Sidoravicius³, that needs to be adapted)

³Kiss, Manolescu, Sidoravicius, *Planar lattices do not recover from forest fires*, Ann. Probab. **43**, 3216–3238 (2015)

- by studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest
- ➤ → we prove the existence of exceptional scales for forest fires without recovery, in a similar sense as for volume-frozen percolation (but with much more work)
- we also obtain a similar deconcentration phenomenon, and a rather complete understanding of the final configuration (*work in progress*)
- for forest fires with recovery, we expect the same behavior up to a time t_c + δ, where δ > 0 universal (using also as a technical input: result by Kiss-Manolescu-Sidoravicius³, that needs to be adapted)
- ▶ at the moment, only very limited understanding of the long-term $(t \to \infty)$ behavior

³Kiss, Manolescu, Sidoravicius, *Planar lattices do not recover from forest fires*, Ann. Probab. **43**, 3216–3238 (2015) ← □ ▷ ← (□)

Thank you!