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Bernoulli percolation

Model for random media: Bernoulli percolation (1957)

Site percolation on T

Vertices (“sites”) are

I occupied / black (p)

I vacant / white (1− p)

Bond percolation on Z2

Edges (“bonds”) are

I open / kept (p)

I closed / deleted (1− p)
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Bernoulli percolation

Percolation: phase transition as p varies
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Forest fire processes

We consider processes on a 2D lattice (Z2 or T), constructed from 2
Poisson point processes: on each vertex, births (rate 1) and ignitions
(rate ζ > 0, typically very small)

I Initially, all vertices vacant

I Each vertex vacant ; occupied at birth times: pure birth process
(↔ Bernoulli site percolation with parameter p(t) = 1− e−t)

I N-volume-frozen percolation: occupied clusters stop growing if
their volume (= # vertices) gets ≥ N, i.e. all vertices along the
outer boundary then stay vacant forever

I forest-fire process: occupied clusters burn when hit by lightning,
i.e. all vertices become vacant instantaneously

I without recovery: burnt vertices then stay vacant forever

I with recovery: burnt vertices can become occupied again, at later
birth times
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Forest fire processes

I Relevant “macroscopic” behavior occurs around critical time tc
(defined by 1− e−tc = pc): instance of self-organized criticality

I N-volume-frozen percolation (N →∞) now well understood1:
deconcentration phenomenon

I For forest fire processes, rate at which a cluster ignited = ζ× volume

→ as ζ → 0, same behavior near tc as N-volume-frozen percolation,
with N ↔ ζ−1?

I As we will see, several difficulty arise: in particular, it requires the
study of percolation with “heavy-tailed” impurities

I Note: “boundary rules” (i.e. keep vacant or not vertices along the
outer boundary of a cluster that freezes / burns) do not seem to
play a significant role (important role when freezing by diameter2)

1van den Berg, Kiss, N., Two-dimensional volume-frozen percolation: deconcentration and
prevalence of mesoscopic clusters, Ann. Sci. ENS 51, 1017–1084 (2018)

2van den Berg, N., Boundary rules and breaking of self-organized criticality in 2D frozen
percolation, Elec. Comm. Probab. 22, no. 65, 15 pp. (2017)
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N-volume-frozen percolation

Box with side length C
√
N (C > 1): for t just above tc (1− e−tc = pc)

C
√
N � L(t)

volume ' θ(t) · (C
√
N)2

(Borgs, Chayes, Kesten, Spencer, 2001)

I freezes at a time very close to t̄ = t̄(C ) := θ−1( 1
C 2 )

I leaves holes with volume . L(t̄)2 � N

I nothing else freezes: only 1 giant cluster freezes, “spanning” the box
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Volume-frozen percolation

Proposition (van den Berg, N., 2014)
Run the process in a box with side length C

√
N (C > 1):

PBC
√

N

N (0 freezes) −→
N→∞

1

C 2
.

→ Full-plane process: can we simply let C →∞, and exchange limits?

No!
√
N = first scale m1(N) in a sequence (mk(N))k≥1 of exceptional

scales
mk(N) = Nδk+o(1),

with δ1 = 1
2 , and δk+1 = 1

2 + 5
96δk (δk ↗ δ∞ = 48

91 ).
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Volume-frozen percolation

In a box with side length m = L(t) (t = t(N)↘ tc): for t ′ just above t,

L(t) � L(t′)

volume ' θ(t′) · (L(t))2

I freezes at a time very close to t̂ s.t. L(t)2θ(t̂) = N,

I leaves a hole around 0 with diameter � L(t̂),

I m̂ = L(t̂) s.t. m2π1(m̂) � N.
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Volume-frozen percolation

Exceptional scales: define m1(N) =
√
N, then m2(N) s.t. m̂2 = m1,

then m3(N) s.t. m̂3 = m2, and so on.

From m2
k+1π1(mk) � N, we obtain

mk(N) = Nδk+o(1), with δk ↗ δ∞ =
48

91

Note: for previous reasoning, need to be “on the edge of
supercriticality”, for t̂ − tc � t − tc (⇔ L(t̂) = m̂� L(t) = m)

→ condition m2π1(m)� N, i.e.

m� m∞(N) = Nδ∞+o(1)
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Volume-frozen percolation

Exceptional scales: for all k ≥ 1,

mk(N) = Nδk+o(1), with δk ↗ δ∞ =
48

91

Theorem (van den Berg, N., 2014)
For N-volume-frozen percolation in box Bm(N): as N →∞,

m1(N) m2(N) m3(N) m4(N)

lim inf PBm(N)

N (0 freezes) > 0
N →∞

macroscopic (frozen / non-frozen)

microscopic (volume O(1))

freezing on (tc,∞)

PBm(N)

N (0 freezes) −→ 0
N →∞

mesoscopic (volume N δ+o(1))
(0 < δ < 1)

freezing only near tc

clusters in final configuration:

m(N) � mk(N) mk(N)� m(N)� mk+1(N)
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Forest fires

Forest fire process without recovery, rate ζ = 0.01



Forest fires

We can again start with m1(ζ) = ζ−1/2, and try to follow the same
reasonings.

For m = L(t), t̂ > t such that

ζ · (t̂ − tc)L(t)2θ(t̂) = 1

Since (t̂ − tc)L(t̂)2π4(L(t̂)) � 1, m̂ = L(t̂) satisfies

ζ ·m2π1(m̂) � m̂2π4(m̂)

→ predicts exceptional scales again, with more complicated formulas:

mk(ζ) = ζ−δk+o(1), with δk ↗ δ∞ =
48

55

But significant difficulty: many fires before time tc , larger and larger
(“heavy-tailed”, in some sense)

→ we have to understand the effect of these “impurities” on the
connectedness of the lattice
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Forest fires

“impurities” created by fires before time tc − ε (ε = 0.1)



Forest fires

Connectedness of the forest at time tc − ε?

I introduce m = L(tc − ε) (typically, ε = ε(ζ)→ 0 as ζ → 0)

I impurities created before time tc − ε: they have diameter . m

I For any vertex v ,

P(impurity with radius ≥ r created at v) ≤ ζ · rα−2+o(1)e−cr/m

with α = 55
48

I if m . mk(ζ), then ζ � m−β for some β = βk >
1
δ∞

= α
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Heavy-tailed impurities

Percolation with “heavy-tailed” impurities (parameter m→∞): for
some given α < 2 and β > 0,

I each vertex v is the center of an impurity with probability . m−β

I radius Rv such that P(Rv ≥ r) . rα−2e−cr/m
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Heavy-tailed impurities

Percolation with heavy-tailed impurities: random environment



Heavy-tailed impurities

“Phase diagram” as α, β vary:
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Heavy-tailed impurities

For forest fires, α = 55
48 and β > α (most interesting regime)

Note: impurities have density m−(β−α), β − α arbitrarily small
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Forest fires

Question: do the impurities have a significant effect on connectedness of
the lattice?

I classical case: single-site updates (“impurities”), need β > 1
ν = 3

4
(“α = −∞”)

→ density of impurities has to stay . m−3/4+o(1)

I here, any β > α > 3
4 work, density m−(β−α)

I effect on pivotal sites: quite subtle balance (impurities “help”
vacant arm / “hinder” occupied arms)

→ relies on inequality between arm exponents

α4 ≤ α2 + 1
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Forest fires

Forest fire process at time tc + ε, in a box with side length

M � m = L(tc − ε) � L(tc + ε)

(typically, m = M̂)

tctc − ε tc + ε

“lower bound”

by percolation with

heavy-tailed impurities

configuration

at this time

near-critical behavior



Forest fires

Conclusion:

I by studying percolation with heavy tailed impurities, we show
that early fires do not perturb too much connectedness of the forest

I → we prove the existence of exceptional scales for forest fires
without recovery, in a similar sense as for volume-frozen
percolation (but with much more work)

I we also obtain a similar deconcentration phenomenon, and a rather
complete understanding of the final configuration (work in progress)

I for forest fires with recovery, we expect the same behavior up to a
time tc + δ, where δ > 0 universal (using also as a technical input:
result by Kiss-Manolescu-Sidoravicius3, that needs to be adapted)

I at the moment, only very limited understanding of the long-term
(t →∞) behavior

3Kiss, Manolescu, Sidoravicius, Planar lattices do not recover from forest fires, Ann. Probab.
43, 3216–3238 (2015)
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End

Thank you!


