On the maximal size of subsets which only a few "distances" appear of vector spaces over finite fields
 Shohei Satake ${ }^{1}$ (Kobe Univ.)

Terms in graph theory

Let G be a k-regular graph (every vertex connects to k edges). - $V(G)$: vertex set of $G, E(G)$: edge set of G
$\cdot A(G)=\left(a_{i j}\right):$ adjacency matrix of G with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$.
$a_{i j}= \begin{cases}\#\left(\text { edges between } v_{i} \text { and } v_{j}\right) & \text { if } i \neq j \\ \#\left(\text { loops connecting to } v_{i}\right) & \text { if } i=j\end{cases}$
$\cdot \operatorname{Spec}(G)=\{\theta \mid \theta$: eigenvalue of $A(G)\}$.

It is known that $\forall \theta \in \operatorname{Spec}(G), \theta \in[-k, k]$

$$
\cdot \lambda(\boldsymbol{G}):=\max \{|\boldsymbol{\theta}| \mid \boldsymbol{\theta} \in \operatorname{Spec}(\boldsymbol{G}) \text { s. } \mathbf{t} .|\boldsymbol{\theta}| \neq \boldsymbol{k}\} .
$$

Erdős distance problem over \mathbb{R}^{d}

Let $X \subset \mathbb{R}^{d}$ be a finite set.

- $e(x, y)=\sqrt{(x-y)^{t} \cdot(x-y)}:$ Euclidean distance
- $\Delta(X)=\{e(x, y) \mid x, y \in X, x \neq y\}$.

Problem (Erdős, 1946) For each $n \in \mathbb{N}$,

$$
g_{d}(n):=\min \left\{|\Delta(X)| \mid X \subset \mathbb{R}^{d} \text { s.t. }|X|=n\right\}=?
$$

(Guth-N.H.Katz, 2015)
In the case of $d=2, g_{2}(n) \geq \Omega\left(n^{1-o(1)}\right)$ for $n \gg 0$.
(Solymosi-Vu, 2008)
In the case of $d \geq 3, g_{d}(n) \geq \Omega\left(n^{\frac{2}{d}-\frac{2}{d(d+2)}}\right)$ for $n \gg 0$.

Erdős distance problem over \mathbb{F}_{q}^{d}

Let $X \subset \mathbb{F}_{q}^{d}$.

- $Q(x)=x^{t} \cdot x=\sum_{i=1}^{d} x_{i}^{2}$
- $\Delta_{Q}(X)=\{Q(x-y) \mid x, y \in X, x \neq y\}$.

Problem (Iosevich-Rudnev 2008) For each $n \in \mathbb{N}$,

$$
\min \left\{\left|\Delta_{Q}(X)\right| \mid X \subset \mathbb{F}_{q}^{d} \text { s.t. }|X|=n\right\}=?
$$

Theorem (Iosevich-Rudnev 2008, Vinh 2008)
If $|X| \geq C q^{\frac{d}{2}}$ for sufficiently large constant C,

$$
\left|\Delta_{Q}(X)\right| \geq \min \left\{q, \frac{|X|}{q^{\frac{d-1}{2}}}\right\}
$$

s-distance sets over \mathbb{R}^{d}
A \boldsymbol{s}-distance set over \mathbb{R}^{d} is a finite set $X \subset \mathbb{R}^{d}$ s.t. $|\Delta(X)|=s$.
Problem (Erdős, 1946). $D_{d}(s)=\max \left\{|X| \mid X: s\right.$-distance set over $\left.\mathbb{R}^{d}\right\}=$?

Theorem (Bannai-Bannai-Stanton, 1983 et.al.).

$$
D_{d}(s) \leq\binom{ d+s}{s}
$$

There seem no corresponding results for \mathbb{F}_{q}^{d} !

s-distance sets over \mathbb{F}_{q}^{d}

Let $X \subset \mathbb{F}_{q}^{d}$.

- $Q(x)=x^{t} \cdot x=\sum_{i=1}^{d} x_{i}^{2}$.
- $\Delta_{Q}(X)=\{Q(x-y) \mid x, y \in X, x \neq y\}$.

A s-distance set over \mathbb{F}_{q}^{d} is a set $X \subset \mathbb{F}_{q}^{d}$ s.t. $\left|\Delta_{Q}(X)\right|=s$
e.g. \mathbb{F}_{3}^{2}
$(0,0)$ -

$$
(0,2) \bullet \quad \bullet^{(2,2)} \text { 2-distance set }
$$

$(0,1) \bullet$
Theorem 1 (S. 2018+)
For any s-distance set X and $q \gg 0$,

$$
|X| \leq \frac{2 s q^{\frac{d-1}{2}}+1}{1-o(1)}
$$

Finite Euclidean graphs

(Medrano et.al. 1995) For $d>0, a \in \mathbb{F}_{q}$, the finite Euclidian graph $E_{q}(d, a)$ is defined as follows

$$
V\left(E_{q}(d, a)\right)=\mathbb{F}_{q}^{d}, E\left(E_{q}(d, a)\right)=\{(x, y) \mid Q(x-y)=a\}
$$

where $Q(x)=x^{t} \cdot x=\sum_{i=1}^{d} x_{i}^{2}$.

Theorem (Medrano et.al. 1995)
(1) $E_{q}(d, a)$ is a regular graph of degree $q^{d-1}+O\left(q^{\frac{d}{2}}\right)$.
(2) $\lambda\left(E_{q}(d, a)\right) \leq 2 q^{\frac{d-1}{2}}$.

Proof of Theorem 1

Lemma. (Expander Mixing Lemma)
If G is a non-bipartite k-regular graph with n vertices, then

$$
\forall X \subset V(G),\left|e_{G}(X)-\frac{k}{2 n}\binom{|X|}{2}\right| \leq \frac{1}{2} \cdot \lambda(G) \cdot|X|
$$

where $e_{G}(X)=\left|\left\{\left\{x_{1}, x_{2}\right\} \in E(G) \mid x_{1}, x_{2} \in X\right\}\right|$
Suppose that X is a s-distance set.
Then,
$\binom{|X|}{2}=\sum_{a \in \Delta_{Q}(X)} e_{E_{q}(d, a)}(X) \leq s\left(\frac{q^{d-1}+O\left(q^{\frac{d}{2}}\right)}{2 \cdot q^{d}}\binom{|X|}{2}+\frac{1}{2} \cdot 2 q^{\frac{d-1}{2}} \cdot|X|\right)$.
From this inequality we get Theorem 1.

