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2018 Nagoya International Workshop on the
Physics and Mathematics of Discrete Geometries,

Nagoya University, November 5 2018
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There are many approaches to quantum gravity: string theory, M-theory,
holography and AdS/CFT, higher spins, asymptotic safety, causal dynamical
triangulations, loop quantum gravity, causal sets, Horava-Lifschitz gravity, ...

In 2010 Gurau discovered the tensor 1/N expansion, and in 2011, I coined the
name “tensor track” for our program to explore this new and exciting
framework, since

it may lead to interesting results for quantum gravity because it is related
to discretized random geometry pondered by Einstein-Hilbert action

It should be useful in other domains: statistical mechanics, condensed
matter, disordered systems, non-linear random flows, data analysis ...
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Simpler situation in d = 2

Three approaches to two-dimensional quantum gravity

Random Matrices and Surface Triangulations

Liouville Theory

Moduli Spaces of Riemann Surfaces

They are essentially equivalent (Miller-Sheffield...)

The tensor track is an attempt to extend the first approach to higher
dimensions.
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Discrete Random Geometries

Quantizing Gravity <=> Randomizing Geometry

Z '
∑
S

∫
Dg e

∫
S AEH (g)

How to sum over metrics (
∫
Dg)?

Should we sum over space time topologies (
∑

S)? Probably Yes
(Maldacena...)

Difficult problem, huge gauge invariance => discretize the problem
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Discrete Quantum Gravity, Matrix and Tensor Models

Regge calculus (60’s) − > matrix models, 80’s : David, Kazakov...
− > tensor models, 90’s: Ambjorn, Durhuus, Jonsson, M. Gross, Sasakura...

Advantages

No space-time to start with (background independence)

No need for any gauge fixing (like in Wilson’s lattice gauge theory)

Can naturally include not only
∫
Dg but also sum over topologies (

∑
S)
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The Tensor Track
Tensor Models

SYK Blitz Review
Melonic Turbulence

Discrete Quantum Gravity, Matrix and Tensor Models

Regge calculus (60’s) − > matrix models, 80’s : David, Kazakov...
− > tensor models, 90’s: Ambjorn, Durhuus, Jonsson, M. Gross, Sasakura...

Advantages

No space-time to start with (background independence)

No need for any gauge fixing (like in Wilson’s lattice gauge theory)

Can naturally include not only
∫
Dg but also sum over topologies (

∑
S)
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d = 2: Matrix Models

Zmatrix =

∫
dM e

− 1
2
TrM2+ λ√

N
TrM3

Feynman graphs are ribbon graphs, hence have faces. ’t Hooft 1/N
expansion is dominated by planar graphs

Zmatrix =
∑
n,g

an,gλ
nN2−2g , 2g − 2 = V − E + F (1.1)

∃ critical coupling λc . The N →∞, λ→ λc single scaling limit leads to
the brownian sphere.

Double scaling limit, topological recursion... incorporate all genera.
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The Tensor Track
Tensor Models

SYK Blitz Review
Melonic Turbulence

d = 2: Matrix Models

Zmatrix =

∫
dM e

− 1
2
TrM2+ λ√

N
TrM3

Feynman graphs are ribbon graphs, hence have faces. ’t Hooft 1/N
expansion is dominated by planar graphs

Zmatrix =
∑
n,g

an,gλ
nN2−2g , 2g − 2 = V − E + F (1.1)

∃ critical coupling λc . The N →∞, λ→ λc single scaling limit leads to
the brownian sphere.

Double scaling limit, topological recursion... incorporate all genera.
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Discretized Einstein-Hilbert Action in dimension d

On a triangulation with Qd equilateral d-simplices and Qd−2 (d − 2)-simplices:

AEH = eκ1Qd−2−κ2Qd .

On the dual graph G: Qd → V , number of vertices; Qd−2 → F , number of

faces, hence Regge action for equilateral simplices becomes

AG (N) = λVNF

the amplitudes of rank d tensor models.

The exact correspondence is (Ambjorn)

lnN =
vol(σd−2)

8G
=

ad
G
,

lnλ =
d

16πG
vol(σd−2)

(
π(d − 1)− (d + 1) arccos

1

d

)
− 2Λ vol(σd)
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Still Problems (d ≥ 3)

However the early 90’s tensor models met some problems:

no simple homology theory,

no analog of ’t Hooft 1/N expansion,

very singular spaces seem to dominate the sum.
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Tensor 1/N expansion

The introduction of unsymmetrized tensors by Gurau (2009) and the
subsequent discovery of the tensor 1/N expansion (2010) solved these problems

canonical notion of faces and full d-homology,

1/N expansion, which is not topological,

less singular spaces (only local conical singularities).
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Random Vectors, Matrices, Tensors

Random Vectors ⊂ Random Matrices ⊂ Random Tensors

Each class is richer than the previous one, having more and more invariants

Each class has some universal aspects and a different 1/N expansion

Each class is connected to the discretized random geometric approach to
quantum gravity, where roughly speaking rank ' dimension

Each class has or should have many concrete applications
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The Colored U(N) Tensor Model

- uses D + 1 random tensors;
- its Feynman graphs are dual to simplicial (orientable) triangulations

Probability measure

dν =
1

Z

∏
i,ni

dT i
ni dT̄

i
n̄i

2π
e−S(T ,T̄ )

S =
D∑
i=0

T̄ i · T i +
λ

ND(D−1)/4

∑
{n}

D∏
i=0

T i
ni

∏
i<j

δnij ,nji + cc

where
∑
~n denotes the sum over all indices nij from 1 to N. The (D+1)D

2

identifying δ functions follow the pattern of edges of the KD+1 complete graph
on D + 1 vertices.
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Feynman Graphs

Colors can conveniently encode strands

and gluing rules for dual triangulations
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D-Homology

For D-regular edge-colored graphs there is a simple canonical definition of
faces

k-dimensional objects = connected components with k colors

hence edges = 1-colored components, faces = 2-colored components

faces exist without any embedding in a surface!
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The Tensor Track
Tensor Models

SYK Blitz Review
Melonic Turbulence

(Un)-colored Tensor Models

Basic objects: U(N)⊗d tensor invariants = regular d-edge-colored connected
bipartite graphs

are dual to colored triangulations

are the interactions (vertices) of rank-d random tensors

are the observables of rank-d random tensors

are the Feynman graphs of rank-d − 1 random tensors
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The Tensor Track
Tensor Models

SYK Blitz Review
Melonic Turbulence

Tensor Invariants

T

T

1

2

3

1

3
2

2

1
3

1

2

2

2

1

1

3

1

2

1

1

2

2

3 3

3

1

2

2

3 1

3
2

3

1

T

T

1

2

3

1

3
2

2

1
3

1

2

2

2

1

1

3

1

2

1

1

2

2

3 3

3

1

2

2

3 1

3
2

3

1

Tensor invariants can be counted as equivalence classes of permutations (J.
Ben Geloun and S. Ramgoolam)

Z c
1 (n) = 1, 0, 0, 0, 0, ... Φ̄ · Φ

Z c
2 (n) = 1, 1, 1, 1, 1, 1, 1... Tr(MM†)n

Z c
3 (n) = 1, 3, 7, 26, 97, 624, 4163...

Z c
4 (n) = 1, 7, 41, 604, 13753...
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Melonic Graphs

Elementary vacuum melon: two vertices, D + 1 edges:

=

2-point elementary melon of color i ∈ {0, 1, · · · ,D}: cut the line of color i .

Definition (Vacuum) melonic graphs are the graphs obtained from the
elementary vacuum melon by finitely many recursive insertions of a 2-point
elementary melon of color i ∈ {0, 1, · · · ,D} on any edge of the same color i .
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The Tensor Track
Tensor Models

SYK Blitz Review
Melonic Turbulence

Melonic Graphs

Elementary vacuum melon: two vertices, D + 1 edges:

=

2-point elementary melon of color i ∈ {0, 1, · · · ,D}: cut the line of color i .

Definition (Vacuum) melonic graphs are the graphs obtained from the
elementary vacuum melon by finitely many recursive insertions of a 2-point
elementary melon of color i ∈ {0, 1, · · · ,D} on any edge of the same color i .
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The Result of the Recursion
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The Tensor Track
Tensor Models

SYK Blitz Review
Melonic Turbulence

Jackets, Degree, 1/N Expansion

Jacket J = color cycle up to orientation (D!/2 at rank D)

Defines a ribbon graph GJ with same number of lines and vertices than G .
This ribbon graph has a genus gJ .

A(G) ∝ ND− 2
D!
ω(G), where ω =

∑
J g(J) ≥ 0, the Gurau degree, governs the

expansion.

For D ≥ 3 this degree is not a topological invariant of the space dual to G .
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The Tensor Track
Tensor Models

SYK Blitz Review
Melonic Turbulence

Counting Faces with Jackets

Each face fij belongs to (D − 1)! jackets (the ones in which i and j are
adjacent).

2− 2gJ = V − L + FJ .

Since L = D+1
2

V , summing over all jackets we get∑
J

FJ = (D − 1)!F = −2
∑
J

gJ +
D!

2
(2 +

D − 1

2
V )

(D − 1)!F − D!(D − 1)V

4
= D!− 2ω

F = D +
D(D − 1)

4
V − 2

D!
ω

Choosing the N−
D(D−1)

4 scaling we get

AG = |λ|VNF− D(D−1)
4

V = |λ|VND− 2ω
D!
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The Tensor Track
Tensor Models

SYK Blitz Review
Melonic Turbulence

Melonic Graphs have Zero Degree

Recall that F = D + D(D−1)
4

V − 2
D!
ω hence

ω = 0 <=> F = D +
D(D − 1)

4
V (A)

The elementary melon has V = 2 and F = D(D + 1)/2 = D + 2D(D−1)
4

.

By induction, since melonic insertion increases V by 2 and F by D(D−1)
2

, any

melonic graph has F = D + D(D−1)
4

V hence has ω = 0, hence is a ZDG.
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Zero Degree Graphs are melonic

Consider a ZDG. Call Fk the number of its faces of length 2k. Recall that

F =
∑
k≥1

Fk = D +
D(D − 1)

4
V (A)

Check by edge counting that

2F1 + 4F2 +
∑
k≥3

2kFk =
D(D + 1)

2
V (B)

Compute 2A− B/2 to prove that

F1 = 2D +
∑
k≥3

(k − 2)Fk +
D(D − 3)

4
V ≥ 2D

Conclude that vacuum (and also 2-point) ZDG’s have faces of length 2.

Conclude that any ZDG is a melon, hence ZDG = Melons (Bonzom,
Gurau, Riello, R, 2011, Witten 2016).
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Melons are Robust!

It is more difficult to count faces for symmetrized or antisymmetrized tensors...
because the colors are no longer there to help.

Klebanov-Tarnopolosky: should melons also dominate at large N for symmetric
traceless tensors?

Answer: Yes! (Carrozza et al, 2017- 2018) : melons dominate all rank-three
irreducible representations of O(N) and Sp(N).

Conjecture: melons dominate all irreducible O(N) representations at any finite
rank ≥ 3.
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The Tensor Track
Tensor Models

SYK Blitz Review
Melonic Turbulence

Some Tensor Tracks Results (before 2016)

Tensor models sum piecewise-linear quasi-manifolds with mild singularities

Renormalizability of associated non-local field theories

Asymptotic Freedom

Constructive Aspects

Numerical exploration of infrared critical points through FRG,

thanks to Benedetti, Ben Geloun, Bonzom, Carrozza, Dartois, Delepouve,
Eichhorn, Erbin, Koslowski, Krajewski, Lahoche, Lionni, Oriti, Ryan, Samary,
Tanasa, Toriumi, Vignes-Tourneret...
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Critical Melons

At the melonic critical point λ = λc the melonic series diverge. The
corresponding continuous random space for the graph distance is the
Aldous tree (Gurau and Ryan 2013)

There is a double scaling limit but it resums few graphs. For d ≤ 6 there
are indications of a triple scaling limit and a link with topological
recursion (Dartois’s work)

There exist enhanced tensor models which interpolate between the
Aldous tree and the brownian sphere. At the transition point in between
lies a baby-universe phase (Bonzom, Delepouve, Lionni, R...).

I see the tensor Aldous phase not as an end but as a starting point for
further analysis. It would be good if eg a phase of the “random volume”
type found by the CDT simulations could be obtained as a critical point
of a tensorial quantum field theory.
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Vincent Rivasseau Laboratoire de Physique Théorique CNRS UMR 8627, Université Paris-Sud,The Tensor Track



The Tensor Track
Tensor Models

SYK Blitz Review
Melonic Turbulence

Critical Melons

At the melonic critical point λ = λc the melonic series diverge. The
corresponding continuous random space for the graph distance is the
Aldous tree (Gurau and Ryan 2013)

There is a double scaling limit but it resums few graphs. For d ≤ 6 there
are indications of a triple scaling limit and a link with topological
recursion (Dartois’s work)

There exist enhanced tensor models which interpolate between the
Aldous tree and the brownian sphere. At the transition point in between
lies a baby-universe phase (Bonzom, Delepouve, Lionni, R...).

I see the tensor Aldous phase not as an end but as a starting point for
further analysis. It would be good if eg a phase of the “random volume”
type found by the CDT simulations could be obtained as a critical point
of a tensorial quantum field theory.
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A bound on chaos

In March 2015 Maldacena, Shenker and Stanford wrote that in any quantum
system at temperature T the Lyapunov exponent for transient chaos in a four
point correlator maximally spaced on the thermal circle

F (t) = Trr [yVyW (t)yVyW (t)], y := Z−1/4e−βH/4,

is bounded by λL ≤ 2πT/~ under very general assumptions (analyticity in a
strip of width β/2 in complex time and reasonable decay at infinity).
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The MSS bound

More precisely they found that

F ' (a− b

N2
eλLt)−b, td < t < ts

and that λL ≤ 2πT/~.

They argued convincingly that saturation of this bound is a strong indication
of the presence of quantum gravity.
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The Sachdev-Ye-Kitaev Model

In 2015 Kitaev found a very simple quasi-conformal one dimensional quantum
mechanics model which saturates the MSS bound, indicating the surprising
presence of a gravitational dual.

The action is

I =

∫
dt

(
i

2

∑
i

ψi
d

dt
ψi − iq/2

∑
1≤i1<···<iq≤N

Ji1,··· ,iqψi1 · · ·ψiq

)
(3.2)

with J a quenched iid random tensor (< JIJI ′ >= δII ′J
2(q − 1)!N−(q−1)), and

ψ an N-vector Majorana Fermion.

I would like to call such theories tensor-vectors (p-spin models in disordered
systems, spiked tensor model in data analysis, isotropic models in the theory of
Gaussian processes all fall in that category).
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The SYK Model

This model is solvable as N →∞, being approximately conformal and
reparametrization invariant in the infra-red limit.

The reason it can be solved in the limit N →∞ is because the leading
Feynman graphs are melons.

For instance the two point function in that limit reads

G(τ) = bq[
π

β sin(πτ/β)
]2/qsgnτ.

The 4 point function computation is more subtle but the result shows
saturation of the MSS bound. This amounts to a NAdS2/NCFT1 holographic
correspondence.
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Gurau-Witten Models

Late in 2016 E. Witten remarked the link between the SYK model and random
tensors.

He proposed a modification to eliminate the quenched disorder with action

I =

∫
dt

(
i

2

∑
i

ψi
d

dt
ψi − iq/2jψ0ψ1 · · ·ψD

)
(3.3)

where ψ’s are D + 1 fermionic tensors and the pattern of index contraction is
exactly the one of Gurau’s initial colored tensor model, hence this new model is
now called the Gurau-Witten model.

An uncolored, i.e. single tensor model with similar properties was soon
developped by Klebanov and Tarnopolsky, based on the three dimensional
O(N) tensor model of Carrozza and Tanasa (2015).
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Random Geometry and Holography

Tensor models à la Gurau-Witten are true quantum tensor theories, not
quenched averages of tensor-vectors theories like SYK.

To understand the physics of the gravity side in this NCFT1/NAdS2

correspondence is a hot current topic.

A main issue for the future is in my opinion to understand the link between
the random geometric and the holographic aspects of random tensors.

Random Holography?
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An Application: Melonic Turbulence

Dartois-Evnin-Lionni-R-Valette considered recently (arXiv:1810.01848) a
specific resonant non-linear equation, namely

i
dαj

dt
(t) =

∞∑
j′,k,k′=0
j+j′=k+k′

Cjj′kk′ ᾱj′(t)αk(t)αk′(t)

on the (infinite) collection of modes αn, n ∈ N.

Such equations naturally emerge in many weakly non-linear PDEs with highly
resonant linearized spectra (cubic Szegö, non-linear Schrödinger, Bose-Einstein
condensates in harmonic trap, non-linear dynamics in AdS space...)
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A Typical Example

d = 1 non-linear Schrödinger equation in harmonic trap

i
∂Ψ

∂t
=

1

2

(
− ∂2

∂x2
+ x2

)
Ψ + g |Ψ|2Ψ,

The linearized problem (g = 0) is a Schrödinger equation with solution

Ψ =
∞∑
n=0

αnψn(x)e−iEnt , En = n +
1

2
,

1

2

(
− ∂2

∂x2
+ x2

)
ψn = Enψn,

with constant αn. In the weakly non-linear regime g � 1, αn acquire slow
drifts. Substituting and projecting on ψk(x) yields

i
d

dt
αj(t) = g

∞∑
j′,k,k′=ø

Cjj′kk′ ᾱj′(t)αk(t)αk′(t) e i(Ej+Ej′−Ek−Ek′ )t ,

where Cjj′kk′ =
∫
dx ψjψj′ψkψk′ . Discarding fast oscillations leads to our

equation with resonant condition Ej + Ej′ − Ek − Ek′ ≡ j + j ′ − k − k ′ = 0.
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Any classical non linear flow q̇i = λTijk...qjqk ... can be solved in power series in
t as a sum over trees (Poincaré-Linstedt...).

We Gaussian-average over initial conditions which excite many modes

〈αj(0)ᾱj′(0)〉α =
δjj′

N
χN(j),

where e.g. χN(j) = 1 if j < N and χN(j) = 1 if j ≥ N, and over the non-linear
couplings C .

The averaged Poincaré-Linstedt series becomes a Feynman graphs series. In
turbulence this apporoach goes back to Kraichnan (Direct Interaction
Approximation) and in disordered systems goes under the name of Mode
Coupling Approximation (Bouchaud-Cugliandolo 1996).
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Our Results

Consider the averaged Sobolev norms

Sγ(t) =<
∑
r≥0

rγᾱr (t)αr (t) >α(0),C

Theorem 1 The dominant graphs as N →∞ for Sγ(t) are exactly the melonic
graphs. The corresponding approximation Smelo

γ (t) is an analytic function of
time in a disk |t| < ρ of finite radius ρ > 0.

Theorem 2 For any γ > 1 there exists a constant δ such that Smelo
γ (t) grows

monotonically in time for t ∈ [0, δ].

It means that in the melonic approximation, energy spreads at least for a while
from the low modes to the higher modes, as expected in a turbulent cascade.
We call this phenomenon melonic turbulence,
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