Random Planar Map $O(n)$ Model Nesting & CLE in Liouville Quantum Gravity

Bertrand Duplantier

Institut de Physique Théorique
Université Paris-Saclay, France

2018 Nagoya International Workshop on the Physics & Mathematics of Discrete Geometries

Nagoya University, Japan • November 5 – 9, 2018

Joint work with
• Gaëtan Borot (MPI Bonn) & Jérémie Bouttier (ENS-Lyon)
Random Planar Map

A random triangulation [Courtesy of N. Curien].
Random Planar Map

A random triangulation [Courtesy of N. Curien].

Continuum limit: The Brownian Map [Le Gall ’11; Miermont ’11]
Random Planar Map & Conformal Map

[Courtesy of N. Curien]

Left: A random triangulation of the sphere. Right: Conformal map to the sphere.

In the continuum scaling limit: Liouville Quantum Gravity

A.M. Polyakov ’81
Random Planar Map & Statistical Model

Percolation hulls [Courtesy of N. Curien].
Liouville QG
Random Measure

$\mu = \left\langle e^{\gamma h} \right\rangle$
Gaussian Free Field (GFF)

Distribution h with Gaussian weight $\exp\left[-\frac{1}{2}(h, h)_{\nabla}\right]$, and Dirichlet inner product in domain D

$$(f_1, f_2)_{\nabla} := (2\pi)^{-1} \int_D \nabla f_1(z) \cdot \nabla f_2(z) dz$$

$$= \text{Cov}((h, f_1)_{\nabla}, (h, f_2)_{\nabla})$$
Liouville Quantum Measure

\[
\mu_\gamma := \lim_{\varepsilon \to 0} \exp[\gamma h_\varepsilon(z)] \varepsilon^{\gamma^2/2} dz,
\]

where \(h_\varepsilon(z) \) is the GFF average on a circle of radius \(\varepsilon \); converges weakly for \(\gamma < 2 \) to a random measure, denoted by \(\mu_\gamma = e^{\gamma h(z)} dz \), and singular w. r. t. Lebesgue measure.

[Høegh-Krohn ’71; Kahane ’85; D. & Sheffield ’11]

For \(\gamma = 2 \), the **renormalized** one,

\[
\sqrt{\log(1/\varepsilon)} \left[\exp[\gamma h_\varepsilon(z)] \varepsilon^{\gamma^2/2} \right]_{\gamma=2} \ dz,
\]

converges, as \(\varepsilon \to 0 \), to a positive **non-atomic** random measure.

[D., Rhodes, Sheffield, Vargas ’14]
Scaling Exponents of (Random) Fractals

SAW in half plane - 1,000,000 steps

Probabilities & Hausdorff Dimensions (e.g., SLE_κ)

\[P \asymp \varepsilon^{2x}, \quad \tilde{P} \asymp \varepsilon^{\tilde{x}} , \quad d = 2 - 2x \quad (= 1 + \kappa/8) \]

δ-Quantum Ball: \[P \asymp \delta^{\Delta}, \quad \tilde{P} \asymp \tilde{\delta}^{\tilde{\Delta}} \]
Knizhnik, Polyakov, Zamolodchikov ’88

x and Δ (\tilde{x} and $\tilde{\Delta}$) are related by the KPZ formula

$$x = U_\gamma(\Delta) := \left(1 - \frac{\gamma^2}{4}\right) \Delta + \frac{\gamma^2}{4} \Delta^2$$

Kazakov ’86; D. & Kostov ’88 [Random matrices]

David; Distler & Kawai ’88 [Liouville field theory]

KPZ Theorem – D. & Sheffield ’11

Benjamini & Schramm ’09; Rhodes & Vargas ’11 [Hausdorff dimension]

David & Bauer ’09; Berestycki, Garban, Rhodes, Vargas ’14 [Heat kernel]
$O(n)$-Loop Model on a Random Planar Map

Disk triangulation and local weights ($\alpha = 1$).

$$Z_\ell = \sum_C u^{V(C)} w(C), \quad w(C) = n^L g^{T_1} h^{T_2};$$

- Sum over all configurations C of a disk of fixed perimeter ℓ
- u auxiliary weight per vertex, $V(C)$ total number of vertices (volume)
- T_1, T_2 numbers of empty or occupied triangles
- number of loops L of C weighted by $n \in [0, 2]$.
Phase diagram of the $O(n)$-loop model ($n \in [0, 2]$) on a random map. For $u = 1$, a line of critical points separates the subcritical and supercritical phases. Critical points may be in three different universality classes: generic, dilute and dense.
Random Map Nesting Theorem [Borot, Bouttier, D. ’16]

Fix \((g, h, \alpha)\) and \(n \in (0, 2)\) such that the model with bending energy reaches a **dilute** or **dense** critical point for the vertex weight \(u = 1\). In the ensemble of random pointed disks of volume \(V\) and perimeter \(L\), the probability distribution of the number \(\mathcal{N}\) of separating loops between the marked point and the boundary behaves as:

\[
P\left[\mathcal{N} = \frac{c \ln V}{\pi} p \bigg| V, L = \ell\right] \sim (\ln V)^{-\frac{1}{2}} V^{-\frac{c}{2}} J(p) \quad \text{(sphere)},
\]

\[
P\left[\mathcal{N} = \frac{c \ln V}{2\pi} p \bigg| V, L = V^{\frac{c}{2}} \ell\right] \sim (\ln V)^{-\frac{1}{2}} V^{-\frac{c}{2\pi}} J(p) \quad \text{(disk)},
\]

where \(\ell > 0\) is fixed, and \(\ln V \gg p\), and:

\[
J(p) = p \ln \left(\frac{2}{n} \frac{p}{\sqrt{1 + p^2}}\right) + \arccot(p) - \arccos\left(\frac{n}{2}\right).
\]

with \(c = 1\) (**dilute**), \(c = 1/[1 - \frac{1}{\pi} \arccos\left(\frac{n}{2}\right)]\) (**dense**), \(c \in [1, 2]\), \(n \in [0, 2]\).

See also Borot, Garcia-Failde ’16; Chen, Curien, Maillard ’17; Budd ’18
Large Deviations Function

\[J(p) \]

\(J(p) \) for \(n = 1 \) (Ising & Percolation), \(n = \sqrt{2} \) (FK Ising), \(n = \sqrt{3} \) (3-state Potts), \(n = 2 \) (4-state Potts & CLE\(_4\)).
Conformal Loop Ensemble (CLE)

[Sheffield ’09, Sheffield & Werner ’12]

The critical $O(n)$-model on a regular planar lattice is predicted to converge in the continuum scaling limit to $\text{SLE}_\kappa/\text{CLE}_\kappa$, for

$$n = -2 \cos \left(\frac{4\pi}{\kappa} \right), \quad n \in (0, 2], \quad \begin{cases} \kappa \in (8/3, 4], \text{ dilute phase} \\ \kappa \in [4, 8), \text{ dense phase}, \end{cases}$$

(Loop-erased random walk & spanning trees [Lawler, Schramm, Werner], Ising & percolation [Smirnov], GFF contour lines [Schramm-Sheffield].)

On a random planar map: random measure conjectured to be, after uniformization, (a form of) the Liouville quantum measure μ_{γ} for

$$\gamma = \min \{ \sqrt{\kappa}, 4/\sqrt{\kappa} \},$$

and independent GFF & CLE (KPZ ’88, Q. Z., Q.I. [Sheffield ’10], M.o.T. [D., Miller, Sheffield ’14], $\gamma = \sqrt{8/3}$ [Miller–Sheffield ’15, ’17])
\(\mathcal{N}_z(\varepsilon) \) is the number of nested loops of a \(\mathrm{CLE}_\kappa \), \(\kappa \in (8/3, 8) \) surrounding the ball \(B(z, \varepsilon) \) in the unit disk.
Extreme nesting in CLE [Miller, Watson & Wilson ’14]
Let $\mathcal{N}_z(\varepsilon)$ be the number of loops of a CLE$_\kappa$, $\kappa \in (8/3, 8)$ surrounding the ball $B(z, \varepsilon)$, and Φ_ν the set of points z where

$$\lim_{\varepsilon \to 0} \frac{\mathcal{N}_z(\varepsilon)}{\ln(1/\varepsilon)} = \nu.$$

$$\dim_{\mathcal{H}} \Phi_\nu = 2 - \gamma_\kappa(\nu)$$

$$\gamma_\kappa(\nu) = \nu \Lambda^*_\kappa(1/\nu), \nu \geq 0; \quad \Lambda^*_\kappa(x) := \sup_{\lambda \in \mathbb{R}} (\lambda x - \Lambda_\kappa(\lambda))$$

$$\Lambda_\kappa(\lambda) = \ln \left(\frac{-\cos(4\pi/\kappa)}{\cos \left(\pi \sqrt{(1 - 4/\kappa)^2 + 8\lambda/\kappa} \right)} \right)$$

Moment generating function of the loop log-conformal radius [Cardy & Ziff ’02; Kenyon & Wilson ’04; Schramm, Sheffield & Wilson ’09]
Conformal Loop Ensemble \(\text{CLE}_\kappa, \kappa \in (8/3, 8) \)

\(\mathcal{U} \) the connected component containing 0 in the complement \(\mathbb{D} \setminus \mathcal{L} \) of the largest loop \(\mathcal{L} \) surrounding 0 in \(\mathbb{D} \). Cumulant generating function of \(T = -\ln(\text{CR}(0, \mathcal{U})) \) [Schramm, Sheffield, Wilson ’09]

\[
\Lambda_\kappa(\lambda) := \ln \mathbb{E} \left[e^{\lambda T} \right] = \ln \left(\frac{-\cos(4\pi/\kappa)}{\cos \left(\pi \left[\left(1 - \frac{4}{\kappa}\right)^2 + \frac{8\lambda}{\kappa} \right]^{1/2} \right)} \right), \lambda \in (-\infty, 1 - \frac{2}{\kappa} - \frac{3\kappa}{32}).
\]
Large Deviations Function

\[\frac{(2\pi)^2}{\kappa} \gamma_{\kappa}(\nu) \]

CLE\(_\kappa\) nesting large deviations function, \(\gamma_{\kappa}(\nu)/\kappa\),
for \(\kappa = 3\) or 6 (Ising / Percolation, \(n = 1\)), \(\kappa = 16/3\) (FK-Ising, \(n = \sqrt{2}\)),
\(\kappa = 25/4\) (3-state Potts, \(n = \sqrt{3}\)), \(\kappa = 4\) (GFF contour lines, \(n = 2\))
Multifractal Spectrum

\[2 - \gamma_\kappa(\nu) \]

\text{CLE}_\kappa \text{ nesting Hausdorff dimension, } \dim_{\mathcal{H}} \Phi_\nu = 2 - \gamma_\kappa(\nu),

for \(\kappa = 3 \) (Ising), \(\kappa = 4 \) (GFF contour lines), \(\kappa = 6 \) (Percolation).
Large Deviations

Euclidean case: for a ball of radius ε

$$\mathbb{P}(\mathcal{N}_z \approx v \ln(1/\varepsilon) \mid \varepsilon) = \mathbb{P}(\mathcal{N}_z \approx vt \mid t) \approx \varepsilon^{\gamma(t)} = \exp[-t\gamma(t)].$$

Liouville Quantum Gravity:

$$t := -\ln \varepsilon; \quad A := -\gamma^{-1} \ln \delta, \quad \delta := \int_{B(z,\varepsilon)} \mu \gamma \quad \text{(quantum ball)}$$

Conditioned on δ, hence A, perform the convolution

$$\mathbb{P}_Q(\mathcal{N}_z \mid A) := \int_0^\infty \mathbb{P}(\mathcal{N}_z \mid t) P(t \mid A) dt,$$

where $P(t \mid A)$ is the probability distribution of the random Euclidean log-radius t, given the quantum log-radius A.
Probability Distribution [D.– Sheffield ’09]

\[AP_A(t) \]

\[\gamma = \sqrt{8/3} \ [A = 2; 20; 200] \]

\[P(t | A) = \frac{A}{\sqrt{2\pi t^3}} \exp \left[-\frac{1}{2t} (A - a_\gamma t)^2 \right] \]

\[t = -\ln \varepsilon, \ A = -\gamma^{-1} \ln \delta, \ \delta = \int_{B(z,\varepsilon)} \mu_\gamma \]

\[a_\gamma := 2/\gamma - \gamma/2 \]
Quantum Large Deviations

\[t = -\ln \varepsilon, \quad A = -\gamma^{-1} \log \delta \text{ (quantum ball),} \]

\[\mathcal{N} \approx -\nu \ln \varepsilon = \nu t, \quad \mathcal{N} \approx -p \ln \delta = \gamma p A, \]

which implies \(\nu t = \gamma p A \). The above convolution then yields, for \(A \to +\infty \),

\[
P_Q (\mathcal{N} \approx \gamma p A \mid A) \approx \int_0^\infty \frac{dt A}{\sqrt{2\pi t^3}} \exp \left(-\frac{(A - a\gamma t)^2}{2t} - \gamma \kappa (\nu) t \right)
\]

\[
\approx \exp \left[-A \Theta(p) \right] \quad \text{(saddle point at constant } \nu t) \]

\(\Theta(p) \) is the large deviations function for the loop number around a \(\delta \)-quantum ball to scale as \(p \log(1/\delta) \).
Legendre Transform & KPZ

In the plane, the Legendre transform gave

\[\gamma_\kappa(v) = \lambda - v \Lambda_\kappa(\lambda), \quad \frac{1}{v} = \frac{\partial \Lambda_\kappa(\lambda)}{\partial \lambda}. \]

In Liouville Quantum Gravity

\[\Theta(p) = U^{-1}_\gamma(\lambda/2) - p \Lambda_\kappa(\lambda), \quad \frac{1}{p} = \frac{\partial \Lambda_\kappa(\lambda)}{\partial U^{-1}_\gamma(\lambda/2)}, \]

where \(U^{-1}_\gamma(\lambda/2) := (\sqrt{a_\gamma^2 + 2\lambda} - a_\gamma)/\gamma \) is the inverse KPZ function, with

\[\gamma = \min \left\{ \sqrt{\kappa}, 4/\sqrt{\kappa} \right\}, \quad a_\gamma = 2/\gamma - \gamma/2. \]
Theorem [Borot, Bouttier, D. ’16]

In Liouville quantum gravity, the cumulant generating function Λ_κ, with $\kappa \in (8/3, 8)$, is transformed into the quantum one, $\Lambda_Q^\kappa := \Lambda_\kappa \circ 2U_\gamma$, where $U_\gamma(\lambda) := \left(1 - \frac{\gamma^2}{4}\right)\lambda + \frac{\gamma^2}{4}\lambda^2$ is the KPZ function for $\gamma = \min\{\sqrt{\kappa}, 4/\sqrt{\kappa}\}$.

Its Legendre-Fenchel transform is

$$\Lambda_Q^\kappa(\lambda := \sup_{\lambda \in \mathbb{R}} \left(\lambda x - \Lambda_Q^\kappa(\lambda)\right).$$

The quantum nesting distribution in the disk is then, for $\delta \to 0$,

$$\mathbb{P}_Q(\mathcal{N}_z \approx p \ln(1/\delta) \mid \delta) \sim \delta^{\Theta(p)},$$

where

$$\Theta(p) = \begin{cases}
 p \Lambda_Q^\kappa(1/p), & \text{if } p > 0 \\
 3/4 - 2/\kappa & \text{if } p = 0 \text{ and } \kappa \in (8/3, 4] \\
 1/2 - \kappa/16 & \text{if } p = 0 \text{ and } \kappa \in [4, 8).
\end{cases}$$
Corollary [Borot, Bouttier, D. ’16]

The **quantum** generating function associated with CLE$_\kappa$ nesting is, for $\kappa \in \left(\frac{8}{3}, 8 \right)$

$$
\Lambda^Q_{\kappa}(\lambda) = \Lambda_{\kappa} \circ 2U_{\gamma}(\lambda) = \ln \left(\frac{\cos \left[\pi \left(1 - \frac{4}{\kappa} \right) \right]}{\cos \left[\pi \left(\frac{2\lambda}{c} + \left| 1 - \frac{4}{\kappa} \right| \right) \right]} \right), \quad c = \max\{1, \kappa/4\},
$$

$\lambda \in \left[\frac{1}{2} - \frac{2}{3\kappa}, \frac{3}{4} - \frac{1}{8\kappa} \right]$ for $\kappa \in \left(\frac{8}{3}, 4 \right)$; \quad $\lambda \in \left[\frac{1}{2} - \frac{\kappa}{8}, \frac{1}{2} - \frac{\kappa}{16} \right]$ for $\kappa \in [4, 8)$.

- **The KPZ relation**, which usually concerns scaling dimensions, acts here on a conjugate variable in a Legendre transform.
- **The composition map** $\Lambda_{\kappa} \rightarrow \Lambda^Q_{\kappa} = \Lambda_{\kappa} \circ 2U_{\gamma}$ to go from Euclidean geometry to Liouville quantum geometry is fairly general.
Theorem [Borot, Bouttier, D. ’16]

The quantum nesting probability of \(\text{CLE}_\kappa \) in a simply connected domain, for the number \(\mathcal{N}_z \) of loops surrounding a ball centered at \(z \) and conditioned to have a given Liouville quantum measure \(\delta \), has the large deviations form,

\[
\mathbb{P}_Q \left(\mathcal{N}_z \approx \frac{cp}{2\pi} \ln(1/\delta) \bigg| \delta \right) \approx \delta \frac{c}{2\pi} J(p), \quad \delta \to 0,
\]

\[
\Theta \left(\frac{cp}{2\pi} \right) = \frac{c}{2\pi} J(p),
\]

where \(c \) and \(J \) are the same as in the combinatorial result for the critical \(O(n) \) model in the scaling limit of large random maps.
Quantum Large Deviations Function

\[\Theta(p) = \frac{c}{2\pi} J \left(\frac{c}{2\pi} p \right) \]

\[\Theta(p) \] for \(\kappa = 3 \) (Ising), \(\kappa = 4 \) (GFF contour lines), \(\kappa = 6 \) (Percolation).
Quantum Multifractal Spectrum

$$1 - \Theta(p)$$

$1 - \Theta(p)$ for $\kappa = 3$ (Ising), $\kappa = 4$ (GFF contour lines), $\kappa = 6$ (Percolation).

Quantum Hausdorff Dimension for p-nesting points: $D_{\mathcal{H}} (1 - \Theta(p))$,
with $D_{\mathcal{H}}$ Hausdorff dimension of the γ-Liouville quantum surface.
CLE on the Riemann sphere [Kemppainen & Werner ’14]

Theorem [Borot, Bouttier, D. ’16]

The nesting probability in $\text{CLE}_\kappa(\hat{C})$ between two balls of radius ε_1 and ε_2 and centered at two distinct punctures, has the large deviations form,

$$
\mathbb{P}^{\hat{C}}\left[N(\varepsilon_1, \varepsilon_2) \approx \nu \ln(1/(\varepsilon_1\varepsilon_2)) \right] \asymp (\varepsilon_1\varepsilon_2)^{\gamma_\kappa(\nu)}, \quad \nu \geq 0, \quad \varepsilon_1, \varepsilon_2 \to 0,
$$

where $\gamma_\kappa(\nu)$ is the large deviations function of the disk topology.

Corollary

For two balls of same radius ε,

$$
\mathbb{P}^{\hat{C}}\left[N(\varepsilon, \varepsilon) \approx \nu \ln(1/\varepsilon) \right] \asymp \varepsilon^{\tilde{\gamma}_\kappa(\nu)}, \quad \nu \geq 0, \quad \varepsilon \to 0,
$$

where $\tilde{\gamma}_\kappa(\nu)$ is related to the disk large deviations function by

$$
\tilde{\gamma}_\kappa(\nu) = 2\gamma_\kappa(\nu/2).
$$
Quantum Riemann sphere

Theorem [Borot, Bouttier, D. ’16]

On the quantum sphere $\hat{\mathbb{C}}$, the large deviations function $\hat{\Theta}$ which governs the nesting probability between two non-overlapping δ-quantum balls,

$$\mathbb{P}_{\hat{\mathbb{C}}} (\mathcal{N} \approx p \ln(1/\delta) \mid \delta) \approx \delta^{\hat{\Theta}(p)}, \quad \delta \to 0,$$

is related to the Θ function for the disk topology by

$$\hat{\Theta}(p) = 2\Theta(p/2),$$

so that

$$\mathbb{P}_{\hat{\mathbb{C}}} \left(\mathcal{N} \approx \frac{cp}{\pi} \ln(1/\delta) \mid \delta \to 0 \right) \approx \delta^{\frac{c}{\pi}J(p)},$$

where c and J are the same as before.

Perfect matching of LQG results for CLE$_\kappa$ with those for the $O(n)$ model on a random planar map, with the correspondence $\delta \leftrightarrow 1/V$, with $\delta \to 0, V \to +\infty$.