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Outline

I The problem of counting triangulations

I Causal triangulations

I Description of the main result

I The midsection and its properties

I Bijection between causal slices and a class of 2-dimensional
coloured cell complexes

I Possible extensions and interesting questions
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Counting triangulations

I In two dimensions the problem was solved by Tutte (1962)
and Bender and Canfield (1986)

Ng;b(n) � n5(g�1)=2+b�1cn

where Ng;b(n) is the number of triangulations of a genus g
surface with b boundary components made up of n triangles.

I No restriction on topology

N(n) =
1X

g=0

Ng;1(n) � (3n=2)!

I Important for the analysis of partition functions for discrete
quantum gravity in 2 dimensions.
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3 dimensions

I Discrete models of 3-dimensional quantum gravity (Ambjørn,
Durhuus, TJ 1991): Need bounds on the number of different
triangulations of S3 that can be constructed with a given
number of tetrahedra.

I In order for
Z =
X

T2T

e�SEH

to converge for some � where

SEH(T ) = �jT j+ �`(T )

(jT j = number of tetrahedra in T , `(T ) = number of edges)
we need

#fT 2 T : jT j = ng � Cn (�)

for some constant C.

I Not known whether the inequality (�) holds.
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Causal Triangulations

I Causal triangulations are simpler triangulations that are made
up of a sequence of spatial slices (global hyperbolic structure)
(Ambjørn, Jurkiewicz, Loll 2001)

I The inequality (�) holds for causal triangulations in 3
dimensions (Durhuus and TJ 2015)

I Main result: There is a bijection between the spatial slices of
3-dimensional causal triangulations and a class of coloured
2-dimensional cell complexes that satisfy a number of
conditions (work with B. Durhuus).
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Fig. 2 Example of G ∈ C3

Z is analytic in the disk |g| < 1
2 and has a critical point at gc = 1

2 . Rather than computing
Z directly it is more informative to study the disk amplitudes; these are computed from the
graphs Cn equipped with a marked point on the boundary. They are essentially the partition
function for a boundary of l edges at a height n and are given by [4]

Z(n; l) = ∑
G∈Cn: |Sn|=l

g1+∆(G), l = 1, . . . . (19)

This can be evaluated by noting that ∆(Σk) = |Sk| + |Sk+1|, and counting the graphs by
building G up successively from its slices {Σ0, . . . ,Σn−1}. The number of ways of connecting
lk+1 points in Sk+1 with lk points in Sk, one of which we know is marked, is

(lk+lk+1−1
lk−1

)
and

so, remembering the marked point on Sn, we find that

Z(n; l) = gln
n−1

∏
k=1

(
∞

∑
lk=1

(
lk + lk+1 −1

lk −1

))
g2(l1+...ln−1)+ln . (20)

Doing the sums gives

Z(n; l) = gl(g−1Xn)
l

n−1

∏
k=1

Xk

1−Xk
, (21)

where

Xk+1 =
g2

1−Xk
, X1 = g2. (22)

The recursion (22) is straightforward to solve and has the following properties:

Xn ↑ X∗ =
1−

√
1−4g2

2
as n ↑ ∞ for g <

1
2

;

Xn =
1
2

n
n+1

at g =
1
2
. (23)

It follows that Z(n; l) is analytic in the disk |g| < 1
2 . Using (21) we can calculate the average

boundary length for disks of height n and obtain

〈 l 〉n =
∑∞

l=1 lZ(n; l)
∑∞

l=1 Z(n; l)
=

1+g−1Xn

1−g−1Xn
<

1+2g√
1−4g2

(24)
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http://www.thephysicsmill.com/2013/10/13/causal-dynamical-triangulations/
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3- dimensional Triangulations

I Building blocks: Tetrahedra with vertices coloured red or blue

I Not all of the same colour

I 3 types: (3,1), (2,2), (1,3)

I Can have monocoloured or two-coloured edges and triangles
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Definition A triangulation K is a collection of tetrahedra some of
whose sides (triangles) are pairwise identified, respecting the
colouring

I The boundary of K, @K, is the set of all non identified
triangles

I Regularity:
(i) No two triangles in the same tetrahedron can be identified
(ii) Two different triangles in a tetrahedron t cannot be
identified with two triangles an a different tetrahedron t0

I Can view a triangulation:
(a) as a topological space
(b) a combinatorial object (abstract simplicial complex)
(c) a subset of Rn, n large enough, where each tetrahedron
(triangle, edge) is the convex hull of its vertices (assumed to
be affinely independent)
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Definition A causal disc-slice is a triangulation K with the
following properties

(i) K is homeomorphic to the 3-ball
(ii) All monocoloured simplices of K belong to the boundary @K

such that the red ones form a disc Dr and the blue ones form
a disc Db

I @K = Dr [Db [ C and C is a 2-dimensional causal slice

I There are no interior vertices
I There is a similar notion of causal sphere-slice which are

homeomorphic to S2 � [0; 1] and have two disjoint boundary
components, one red and one blue
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Definition A causal disc-triangulation is a triangulation of the form

M =
N[

i=1

Ki

where Ki is a causal disc-slice with boundary discs Di
r and Di

b

such that Ki and Kj are disjoint for i 6= j except Di
b = Di+1

r ,
i = 1; : : : ; N � 1, as uncoloured 2-dimensional triangulations.

I @M = D1
r [DN

b [ C

I Given two triangulated discs D1 and D2 there exists a causal
disc slice K such that Dr = D1 and D2 = Dr.
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The Midsection

I We can view any causal disc-slice K as imbedded in Rn

(n � 7) such that each tetrahedron t is a convex linear
combination of its vertices, i.e. x 2 t = (v1v2v3v4), vj 2 Rn,
can be expressed as

x =
4X

i=1

sivi; si � 0;
4X

i=1

si = 1

I Define a real valued function h on K

h(x) =
X

i:vi red

si (well de�ned)

I The midsection of K is defined to be

SK = fx 2 K : h(x) = 1=2g
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I The midsection SK is made up of triangles with red edges or
blue edges and two-coloured quadrangles with opposite edges
of the same colour
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I If we contract the red edges in SK we obtain Db and
contracting the blue edges yields Dr

I Edges, triangles, tetrahedra in K correspond to verticies,
edges, 2-cells in SK . We let ea denote the edge in K which
corresponds to the vertex a in SK .

I SK is a 2-dimensional cell complex (cells are triangles and
quadrangles) with coloured edges and the topology of a disc

I Isomorphic causal disc-slices give rise to isomorphic
midsections

I For sphere-slices the midsection is a 2-sphere 14 / 30



Properties of The Midsection

I We denote edges, triangles and quadrangles in the midsection
by haiaji, haiajaki, haiajaka`i

I A red path in SK is a sequence of red edges haiai+1i,
i = 1; : : : ; k � 1. We say the path connects a1 to ak. It is
simple if ai 6= aj , i 6= j and we say it is closed if a1 = ak and
ai 6= aj , i; j = 1; : : : k � 1
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Property �

Lemma 1 Two different vertices in SK cannot be connected both
by a red and by a blue path (property �)

Proof: If a and b are vertices in SK connected by a blue path then
the red endpoints of ea and eb are identical. If a and b are also
connected by a red path then both the endpoints of ea and eb are
the same so ea = eb.

A B

Not a midsection
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Properties �1 and �2

Lemma 2 (i) Let � be a closed red simple path in SK . Then the
interior of � contains only red edges (Property �1)

(ii) Let � be a simple red path connecting two vertices belonging
to two different blue arcs of the boundary of SK . Then the
endpoints of � are the endpoints of red boundary arc (Property �2)

Proof of (i)

Proof of (ii)
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Property 

I Definition Let e and f be different blue edges in SK . We say
they are connected by a blue path of quadrangles if

I Lemma 3 Let e = habi and f = ha0b0i be different blue edges
in SK . Suppose a and a0 as well as b and b0 are connected by
red paths. Then they are connected by a blue path of
triangles. (Property )
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Idea of proof

Let �e and �f be the two two-coloured triangles in K containing
e and f . Then they share a blue edge (xy) in the blue boundary of
K and they have red vertices ve and vf in @K, ve 6= vf . Looking
at the ”star” of (xy) in K, which contains a sequence of (2; 2)
tetrahedra, we find the desired path of quadrangles.
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The bijection

I Let S denote the set of all 2-dimensional cell complexes S
with the topology of a disc

(i) made up of red and blue triangles as well as two-coloured
quadrangles with opposite sides of the same colour

(ii) containing at least one triangle of each colour

(iii) satisfying conditions �, �1, �2 and .

I Let C denote the set of all causal disc-slices.

I Define a mapping � : C 7! S by �(K) = SK .

I Theorem � is a bijection.

20 / 30



Outline of proof

I Different disc-slices have different midsections so � is injective.

I From any S 2 S we construct a unique simplicial complex
KS . We show that this simplicial complex has the topology of
a 3-ball and is in fact a disc-slice. The midsection of KS is by
construction the coloured cell complex S that we started with.

I To each a in the vertex set V (S) of S we associate two
(abstract) vertices ra (red) and ba (blue).

I Identify: ra = rb if a and b are joined by a blue path in S and
ba = bb if a and b are joined by a red path.

I The vertex set fra; ba : a 2 V (S)g (with the identifications
described above) is the vertex set K0

S of an abstract simplicial
complex KS .
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I The set of 3-simplicies K3
S is obtained from the 2-cells of S

red triangle 4 = habci 7! t4 = (rarbrcba)

blue triangle 4 = habci 7! t4 = (babbbcra)

quadrangle 2 = habcdi 7! t2 = (rarbbabc)

I This is well defined by condition � and defines a
3-dimensional simplicial complex KS whose 3-simplicies
(tetrahedra) are labelled by the 2-cells of S
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I Two tetrahedra tF and tF 0 share a triangle if and only if the
2-cells F and F 0 share an edge

I The monocoloured triangles of KS are labelled by the
triangles of S and the two-coloured triangles of KS are
labelled by the edges of S

I The monocoloured edges in KS lie in the boundary and the
two-coloured edges are labelled by the vertices of S

I All monocoloured simplicies are in the boundary @KS

I There is a one to one correspondence between the boundary
edges of S and the two-coloured triangles in @KS and these
triangles form a 2-dimensional causal slice

I Lemma KS has the topology of a 3-ball so @KS is a 2-sphere

I It follows that KS is a sphere slice with midsection S

23 / 30



Locally constructible simplicial manifolds

A 3d simplicial manifold M has a local construction if there is a
sequence of simplicial manifolds M1;M2; : : : ;Mk such that

(i) M1 is a tetrahedron

(ii) Mi+1 is obtained from Mi by either gluing a tetrahedron to
Mi along a triangle or by identifying two triangles in @Mi

which already share an edge

(iii) Mk = M

There is an analogous notion of local construction for 2 and
higher-dimensional simplicial manifolds
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Facts about LC triangulations

I Any 2-dimensional simplicial manifold with the topology of S2

or the 2-disc has a LC

I There is a C > 1 such that the number of locally
constructible triangulations of S3 of volume V is bounded by
CV (Durhuus and TJ 1995)

I Not all triangulations of S3 are locally constructible
(Benedetti and Ziegler 2011)
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Outline of the proof of the Lemma

I Take a local construction of S

I Use it to obtain an alternative construction of KS :
K1;K2; : : : ;Kn = KS

I K1 is a single tetrahedron

I Kj is obtained from Kj�1 by gluing a single tetrahedron
along a triangle to @Kj�1 or by identifying two triangles in
@Kj�1 which share an edge
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I K1 is a 3-ball and the topology does not change as we go
from Kj�1 to Kj so KS is a 3-ball

I This proves the Lemma and the Main Result

I All the results generalise to the case of sphere-slices with
minor modifications
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Generalisation to 4 dimensions
I One can generalise the definition of a causal triangulation to

any dimension.
I One can generalise the construction of a midsection to

4-dimensional causal slices.
I There are 4 types of 4-simplicies that arise: (1,4), (2,3), (3,2)

and (4,1).
I The midsection is a 3-dimensional cell complex made up of

coloured tetrahedra and prisms:
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I The midsection is in this case a 3-dimensional cell complex

I These cell complexes are not well understood. In particular,
we do not have an exponential bound on their number as a
function of the number of 3-cells

I However, if we have an exponential bound on the number of
midsections that arise then we obtain an exponential bound
on the number of causal 4-dimensional triangulations as a
function of the number of 4-simplicies
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Final Remarks

I Bijections between labelled trees and 2-dimensional
triangulations have been an important tool in the study of
2-dimensional triangulations in recent years. The bijection we
have described here is the first generalisation to 3 dimensions

I Is there a bijection between triangulations of S3 and some
labelled ”2-dimensional structures”?

I There is still work to be done on causal triangulations in 3
dimensions: What midsections arise in a causal slice with
given the boundary discs?

I Can we count the number causal slices (with given boundary
discs) exactly or get asymptotic results about their number?

I Transfer matrix for 3-dimensional causal triangulations?
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