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» Description of the main result
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» Bijection between causal slices and a class of 2-dimensional
coloured cell complexes
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Counting triangulations

» In two dimensions the problem was solved by Tutte (1962)
and Bender and Canfield (1986)
Ng b(n) ~ n5(g—1)/2+b—lcn

where Ny 3(n) is the number of triangulations of a genus g

surface with b boundary components made up of n triangles.

» No restriction on topology

o0

N(n) = Z Ngi(n) ~ (3n/2)!

g=0

» Important for the analysis of partition functions for discrete
quantum gravity in 2 dimensions.
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3 dimensions

» Discrete models of 3-dimensional quantum gravity (Ambjgrn,
Durhuus, TJ 1991): Need bounds on the number of different
triangulations of S® that can be constructed with a given
number of tetrahedra.

Z = Z e~ SeH

TeT

» In order for

to converge for some kK where
SEH(T) = K,’T‘ + AZ(T)

(|T'| = number of tetrahedra in T', £(T") = number of edges)

we need
#{TeT:|T|=n}<C" (%)

for some constant C.
» Not known whether the inequality (%) holds.



Causal Triangulations

» Causal triangulations are simpler triangulations that are made
up of a sequence of spatial slices (global hyperbolic structure)
(Ambjgrn, Jurkiewicz, Loll 2001)

» The inequality (x) holds for causal triangulations in 3
dimensions (Durhuus and TJ 2015)

» Main result: There is a bijection between the spatial slices of
3-dimensional causal triangulations and a class of coloured
2-dimensional cell complexes that satisfy a number of
conditions (work with B. Durhuus).
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dynamical-triangulations/

http://www.thephysicsmill.com /2013/10/13/causal
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3- dimensional Triangulations

v

Building blocks: Tetrahedra with vertices coloured red or blue

Not all of the same colour
3 types: (3,1), (2,2), (1,3)
Can have monocoloured or two-coloured edges and triangles

v

v

v

/ 30



Definition A triangulation K is a collection of tetrahedra some of
whose sides (triangles) are pairwise identified, respecting the
colouring

» The boundary of K, 0K, is the set of all non identified
triangles

» Regularity:
(i) No two triangles in the same tetrahedron can be identified
(ii) Two different triangles in a tetrahedron ¢ cannot be
identified with two triangles an a different tetrahedron ¢’

» Can view a triangulation:
(a) as a topological space
(b) a combinatorial object (abstract simplicial complex)
(c) a subset of R™, n large enough, where each tetrahedron
(triangle, edge) is the convex hull of its vertices (assumed to
be affinely independent)
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Definition A causal disc-slice is a triangulation K with the
following properties

(i) K is homeomorphic to the 3-ball

(ii) All monocoloured simplices of K belong to the boundary 6K

such that the red ones form a disc D, and the blue ones form
a disc Dy

» OK = D, U Dy, UC and C is a 2-dimensional causal slice

> There are no interior vertices

> There is a similar notion of causal sphere-slice which are
homeomorphic to S? x [0, 1] and have two disjoint boundary
components, one red and one blue
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Definition A causal disc-triangulation is a triangulation of the form

where K; is a causal disc-slice with boundary discs D% and D}
such that K; and K are disjoint for 7 # j except D} = Dutl
1=1,...,N —1, as uncoloured 2-dimensional triangulations.

» M =DluDfuC

» Given two triangulated discs D; and D5 there exists a causal
disc slice K such that D, = Dy and Dy = D,.
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The Midsection

» We can view any causal disc-slice K as imbedded in R™
(n > 7) such that each tetrahedron t is a convex linear
combination of its vertices, i.e. z € t = (v1v2v3v4), v; € R",
can be expressed as

4 4
:z::z.si'ui, s; >0, Zsizl
i=1 i=1
» Define a real valued function h on K

h(z) = > s; (well defined)

2:v; red
» The midsection of K is defined to be

Sk ={z € K : h(z) =1/2}
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» The midsection Sk is made up of triangles with red edges or
blue edges and two-coloured quadrangles with opposite edges
of the same colour
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If we contract the red edges in Sk we obtain Dy and
contracting the blue edges yields D,

Edges, triangles, tetrahedra in K correspond to verticies,
edges, 2-cells in Sx. We let e, denote the edge in X which
corresponds to the vertex a in Sk.

Sk is a 2-dimensional cell complex (cells are triangles and
quadrangles) with coloured edges and the topology of a disc
Isomorphic causal disc-slices give rise to isomorphic
midsections

For sphere-slices the midsection is a 2-sphere
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Properties of The Midsection

» We denote edges, triangles and quadrangles in the midsection
by (aiaj), (a,iajak), (a,iajaka,g)

» A red path in Sk is a sequence of red edges (a;a;+1),
1=1,...,k— 1. We say the path connects a; to ax. It is
simple if a; # a;, ¢ # 7 and we say it is closed if a; = a; and
a; #a;,%4,7=1,...k—1
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Property a

Lemma 1 Two different vertices in Sx cannot be connected both
by a red and by a blue path (property o)

Proof: If a and b are vertices in Sk connected by a blue path then
the red endpoints of e, and e; are identical. If @ and b are also
connected by a red path then both the endpoints of e, and e; are
the same so e, = ep.

Not a midsection
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Properties 81 and (5
Lemma 2 (i) Let p be a closed red simple path in Skx. Then the
interior of p contains only red edges (Property f)

(ii) Let 1 be a simple red path connecting two vertices belonging
to two different blue arcs of the boundary of Sk. Then the
endpoints of p are the endpoints of red boundary arc (Property B2)

Proof of (i)

Proof of (ii)
=
\_/

NeT ox oK
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Property v

» Definition Let e and f be different blue edges in Sx. We say
they are connected by a blue path of quadrangles if

g HEEE;

» Lemma 3 Let e = (ab) and f = (a't’) be different blue edges
in Sk. Suppose a and a’ as well as b and b’ are connected by
red paths. Then they are connected by a blue path of
triangles. (Property 7y)
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|dea of proof

Let Ac and Ay be the two two-coloured triangles in K containing
e and f. Then they share a blue edge (zy) in the blue boundary of
K and they have red vertices v and vy in 0K, ve # vy. Looking
at the "star” of (zy) in K, which contains a sequence of (2,2)
tetrahedra, we find the desired path of quadrangles.

oL 4@

e §
b b
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The bijection

» Let S denote the set of all 2-dimensional cell complexes S
with the topology of a disc

(i) made up of red and blue triangles as well as two-coloured
quadrangles with opposite sides of the same colour

(i) containing at least one triangle of each colour
(iii) satisfying conditions a, B1, B2 and 7.

> Let C denote the set of all causal disc-slices.

» Define a mapping ¢ : C — S by ¢(K) = Sk.

» Theorem ¢ is a bijection.
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Outline of proof

» Different disc-slices have different midsections so ¢ is injective.

» From any S € & we construct a unique simplicial complex
Kg. We show that this simplicial complex has the topology of
a 3-ball and is in fact a disc-slice. The midsection of Kg is by
construction the coloured cell complex S that we started with.

» To each a in the vertex set V(.S) of S we associate two
(abstract) vertices 7, (red) and b, (blue).

» ldentify: 7, = 7 if @ and b are joined by a blue path in S and
b, = by if @ and b are joined by a red path.

» The vertex set {rq,b, : @ € V(S)} (with the identifications
described above) is the vertex set K2 of an abstract simplicial
complex Kg.
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> The set of 3-simplicies Kg is obtained from the 2-cells of S
red triangle A = (abc) — ta = (rq7rs7cba)
blue triangle A = (abc) — ta = (babspbcrs)
quadrangle O = (abcd) — to = (ro7sbabe)

» This is well defined by condition a and defines a
3-dimensional simplicial complex Kg whose 3-simplicies
(tetrahedra) are labelled by the 2-cells of S

LIS
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Two tetrahedra tg and £tz share a triangle if and only if the
2-cells F' and F' share an edge

The monocoloured triangles of Kg are labelled by the
triangles of .S and the two-coloured triangles of Kg are
labelled by the edges of S

The monocoloured edges in Kg lie in the boundary and the
two-coloured edges are labelled by the vertices of S

All monocoloured simplicies are in the boundary 8K

There is a one to one correspondence between the boundary
edges of S and the two-coloured triangles in 8K s and these
triangles form a 2-dimensional causal slice

Lemma K has the topology of a 3-ball so 0K is a 2-sphere

It follows that Kg is a sphere slice with midsection S
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Locally constructible simplicial manifolds

A 3d simplicial manifold M has a local construction if there is a
sequence of simplicial manifolds My, Mo, ..., My such that

(i) My is a tetrahedron

(i) M, is obtained from M; by either gluing a tetrahedron to
M; along a triangle or by identifying two triangles in 8M;
which already share an edge

(i) My =M

There is an analogous notion of local construction for 2 and
higher-dimensional simplicial manifolds
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Facts about LC triangulations

» Any 2-dimensional simplicial manifold with the topology of S2
or the 2-disc has a LC

> There is a C' > 1 such that the number of locally
constructible triangulations of S% of volume V is bounded by
CV (Durhuus and TJ 1995)

» Not all triangulations of S2 are locally constructible
(Benedetti and Ziegler 2011)
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Outline of the proof of the Lemma

» Take a local construction of S

» Use it to obtain an alternative construction of Kg:
K17K27"'7Kn =Ks

» K is a single tetrahedron

» K is obtained from K;_; by gluing a single tetrahedron
along a triangle to 8K;_; or by identifying two triangles in
0K ;_1 which share an edge
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1
v

» K is a 3-ball and the topology does not change as we go
from K;_1 to K; so Kg is a 3-ball

» This proves the Lemma and the Main Result

> All the results generalise to the case of sphere-slices with
minor modifications
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Generalisation to 4 dimensions

» One can generalise the definition of a causal triangulation to
any dimension.

» One can generalise the construction of a midsection to
4-dimensional causal slices.

» There are 4 types of 4-simplicies that arise: (1,4), (2,3), (3,2)
and (4,1).

» The midsection is a 3-dimensional cell complex made up of
coloured tetrahedra and prisms:
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» The midsection is in this case a 3-dimensional cell complex

» These cell complexes are not well understood. In particular,
we do not have an exponential bound on their number as a
function of the number of 3-cells

» However, if we have an exponential bound on the number of
midsections that arise then we obtain an exponential bound
on the number of causal 4-dimensional triangulations as a
function of the number of 4-simplicies
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Final Remarks

» Bijections between labelled trees and 2-dimensional
triangulations have been an important tool in the study of
2-dimensional triangulations in recent years. The bijection we
have described here is the first generalisation to 3 dimensions

» Is there a bijection between triangulations of S and some
labelled " 2-dimensional structures”?

» There is still work to be done on causal triangulations in 3
dimensions: What midsections arise in a causal slice with
given the boundary discs?

» Can we count the number causal slices (with given boundary
discs) exactly or get asymptotic results about their number?

» Transfer matrix for 3-dimensional causal triangulations?
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