The Structure of the Spatial slices of 3-dimensional Causal Triangulations

Thordur Jonsson, University of Iceland

8 November 2018

2018 Nagoya international workshop on the physics and mathematics of discrete geometries

Outline

- The problem of counting triangulations
- Causal triangulations
- Description of the main result
- The midsection and its properties
- Bijection between causal slices and a class of 2-dimensional coloured cell complexes
- Possible extensions and interesting questions

Counting triangulations

- In two dimensions the problem was solved by Tutte (1962) and Bender and Canfield (1986)

$$
N_{g, b}(n) \sim n^{5(g-1) / 2+b-1} c^{n}
$$

where $N_{g, b}(n)$ is the number of triangulations of a genus g surface with b boundary components made up of n triangles.

- No restriction on topology

$$
N(n)=\sum_{g=0}^{\infty} N_{g, 1}(n) \sim(3 n / 2)!
$$

- Important for the analysis of partition functions for discrete quantum gravity in 2 dimensions.

3 dimensions

- Discrete models of 3-dimensional quantum gravity (Ambjørn, Durhuus, TJ 1991): Need bounds on the number of different triangulations of S^{3} that can be constructed with a given number of tetrahedra.
- In order for

$$
Z=\sum_{T \in \mathcal{T}} e^{-S_{E H}}
$$

to converge for some κ where

$$
S_{E H}(T)=\kappa|T|+\lambda \ell(T)
$$

($|T|=$ number of tetrahedra in $T, \ell(T)=$ number of edges) we need

$$
\#\{T \in \mathcal{T}:|T|=n\} \leq C^{n} \quad(*)
$$

for some constant C.

- Not known whether the inequality ($*$) holds.

Causal Triangulations

- Causal triangulations are simpler triangulations that are made up of a sequence of spatial slices (global hyperbolic structure) (Ambjørn, Jurkiewicz, Loll 2001)
- The inequality $(*)$ holds for causal triangulations in 3 dimensions (Durhuus and TJ 2015)
- Main result: There is a bijection between the spatial slices of 3-dimensional causal triangulations and a class of coloured 2-dimensional cell complexes that satisfy a number of conditions (work with B. Durhuus).

http://www.thephysicsmill.com/2013/10/13/causal-dynamical-triangulations/

3- dimensional Triangulations

- Building blocks: Tetrahedra with vertices coloured red or blue

- Not all of the same colour
- 3 types: $(3,1),(2,2),(1,3)$
- Can have monocoloured or two-coloured edges and triangles

Definition A triangulation K is a collection of tetrahedra some of whose sides (triangles) are pairwise identified, respecting the colouring

- The boundary of $K, \partial K$, is the set of all non identified triangles
- Regularity:
(i) No two triangles in the same tetrahedron can be identified
(ii) Two different triangles in a tetrahedron t cannot be identified with two triangles an a different tetrahedron t^{\prime}
- Can view a triangulation:
(a) as a topological space
(b) a combinatorial object (abstract simplicial complex)
(c) a subset of \mathbb{R}^{n}, n large enough, where each tetrahedron (triangle, edge) is the convex hull of its vertices (assumed to be affinely independent)

Definition A causal disc-slice is a triangulation K with the following properties
(i) K is homeomorphic to the 3-ball
(ii) All monocoloured simplices of K belong to the boundary ∂K such that the red ones form a disc D_{r} and the blue ones form a disc D_{b}

- $\partial K=D_{r} \cup D_{b} \cup C$ and C is a 2-dimensional causal slice

- There are no interior vertices
- There is a similar notion of causal sphere-slice which are homeomorphic to $S^{2} \times[0,1]$ and have two disjoint boundary components, one red and one blue

Definition A causal disc-triangulation is a triangulation of the form

$$
M=\bigcup_{i=1}^{N} K_{i}
$$

where K_{i} is a causal disc-slice with boundary discs D_{r}^{i} and D_{b}^{i} such that K_{i} and K_{j} are disjoint for $i \neq j$ except $D_{b}^{i}=D_{r}^{i+1}$, $i=1, \ldots, N-1$, as uncoloured 2-dimensional triangulations.

- $\partial M=D_{r}^{1} \cup D_{b}^{N} \cup C$

- Given two triangulated discs D_{1} and D_{2} there exists a causal disc slice K such that $D_{r}=D_{1}$ and $D_{2}=D_{r}$.

The Midsection

- We can view any causal disc-slice K as imbedded in \mathbb{R}^{n} ($n \geq 7$) such that each tetrahedron t is a convex linear combination of its vertices, i.e. $x \in t=\left(v_{1} v_{2} v_{3} v_{4}\right), v_{j} \in \mathbb{R}^{n}$, can be expressed as

$$
x=\sum_{i=1}^{4} s_{i} v_{i}, \quad s_{i} \geq 0, \quad \sum_{i=1}^{4} s_{i}=1
$$

- Define a real valued function h on K

$$
h(x)=\sum_{i: v_{i} \text { red }} s_{i} \quad \text { (well defined) }
$$

- The midsection of K is defined to be

$$
S_{K}=\{x \in K: h(x)=1 / 2\}
$$

- The midsection S_{K} is made up of triangles with red edges or blue edges and two-coloured quadrangles with opposite edges of the same colour

- If we contract the red edges in S_{K} we obtain D_{b} and contracting the blue edges yields D_{r}
- Edges, triangles, tetrahedra in K correspond to verticies, edges, 2-cells in S_{K}. We let e_{a} denote the edge in K which corresponds to the vertex a in S_{K}.
- S_{K} is a 2-dimensional cell complex (cells are triangles and quadrangles) with coloured edges and the topology of a disc
- Isomorphic causal disc-slices give rise to isomorphic midsections
- For sphere-slices the midsection is a 2-sphere

Properties of The Midsection

- We denote edges, triangles and quadrangles in the midsection by $\left\langle a_{i} a_{j}\right\rangle,\left\langle a_{i} a_{j} a_{k}\right\rangle,\left\langle a_{i} a_{j} a_{k} a_{\ell}\right\rangle$
- A red path in S_{K} is a sequence of red edges $\left\langle a_{i} a_{i+1}\right\rangle$, $i=1, \ldots, k-1$. We say the path connects a_{1} to a_{k}. It is simple if $a_{i} \neq a_{j}, i \neq j$ and we say it is closed if $a_{1}=a_{k}$ and $a_{i} \neq a_{j}, i, j=1, \ldots k-1$

Property α

Lemma 1 Two different vertices in S_{K} cannot be connected both by a red and by a blue path (property α)
Proof: If a and b are vertices in S_{K} connected by a blue path then the red endpoints of e_{a} and e_{b} are identical. If a and b are also connected by a red path then both the endpoints of e_{a} and e_{b} are the same so $e_{a}=e_{b}$.

Not a midsection

Properties β_{1} and β_{2}

Lemma 2 (i) Let ρ be a closed red simple path in S_{K}. Then the interior of ρ contains only red edges (Property β_{1})
(ii) Let μ be a simple red path connecting two vertices belonging to two different blue arcs of the boundary of S_{K}. Then the endpoints of μ are the endpoints of red boundary arc (Property β_{2}) Proof of (i)

Proof of (ii)

Property γ

- Definition Let e and f be different blue edges in S_{K}. We say they are connected by a blue path of quadrangles if

- Lemma 3 Let $e=\langle a b\rangle$ and $f=\left\langle a^{\prime} b^{\prime}\right\rangle$ be different blue edges in S_{K}. Suppose a and a^{\prime} as well as b and b^{\prime} are connected by red paths. Then they are connected by a blue path of triangles. (Property γ)

Idea of proof

Let Δ_{e} and Δ_{f} be the two two-coloured triangles in K containing e and f. Then they share a blue edge $(x y)$ in the blue boundary of K and they have red vertices v_{e} and v_{f} in $\partial K, v_{e} \neq v_{f}$. Looking at the "star" of $(x y)$ in K, which contains a sequence of $(2,2)$ tetrahedra, we find the desired path of quadrangles.

The bijection

- Let \mathcal{S} denote the set of all 2-dimensional cell complexes S with the topology of a disc
(i) made up of red and blue triangles as well as two-coloured quadrangles with opposite sides of the same colour
(ii) containing at least one triangle of each colour
(iii) satisfying conditions $\alpha, \beta_{1}, \beta_{2}$ and γ.
- Let \mathcal{C} denote the set of all causal disc-slices.
- Define a mapping $\phi: \mathcal{C} \mapsto \mathcal{S}$ by $\phi(K)=S_{K}$.
- Theorem ϕ is a bijection.

Outline of proof

- Different disc-slices have different midsections so ϕ is injective.
- From any $S \in \mathcal{S}$ we construct a unique simplicial complex K_{S}. We show that this simplicial complex has the topology of a 3-ball and is in fact a disc-slice. The midsection of K_{S} is by construction the coloured cell complex S that we started with.
- To each a in the vertex set $V(S)$ of S we associate two (abstract) vertices r_{a} (red) and b_{a} (blue).
- Identify: $r_{a}=r_{b}$ if a and b are joined by a blue path in S and $b_{a}=b_{b}$ if a and b are joined by a red path.
- The vertex set $\left\{r_{a}, b_{a}: a \in V(S)\right\}$ (with the identifications described above) is the vertex set K_{S}^{0} of an abstract simplicial complex K_{S}.
- The set of 3-simplicies K_{S}^{3} is obtained from the 2-cells of S

$$
\begin{aligned}
& \text { red triangle } \triangle=\langle a b c\rangle \mapsto t_{\triangle}=\left(r_{a} r_{b} r_{c} b_{a}\right) \\
& \text { blue triangle } \triangle=\langle a b c\rangle \mapsto t_{\triangle}=\left(b_{a} b_{b} b_{c} r_{a}\right) \\
& \text { quadrangle } \square=\langle a b c d\rangle \mapsto t_{\square}=\left(r_{a} r_{b} b_{a} b_{c}\right)
\end{aligned}
$$

- This is well defined by condition α and defines a 3-dimensional simplicial complex K_{S} whose 3-simplicies (tetrahedra) are labelled by the 2-cells of S

- Two tetrahedra t_{F} and $t_{F^{\prime}}$ share a triangle if and only if the 2-cells F and $F^{\prime \prime}$ share an edge
- The monocoloured triangles of K_{S} are labelled by the triangles of S and the two-coloured triangles of K_{S} are labelled by the edges of S
- The monocoloured edges in K_{S} lie in the boundary and the two-coloured edges are labelled by the vertices of S
- All monocoloured simplicies are in the boundary ∂K_{S}
- There is a one to one correspondence between the boundary edges of S and the two-coloured triangles in ∂K_{S} and these triangles form a 2-dimensional causal slice
- Lemma K_{S} has the topology of a 3-ball so ∂K_{S} is a 2-sphere
- It follows that K_{S} is a sphere slice with midsection S

Locally constructible simplicial manifolds

A 3d simplicial manifold M has a local construction if there is a sequence of simplicial manifolds $M_{1}, M_{2}, \ldots, M_{k}$ such that
(i) M_{1} is a tetrahedron
(ii) M_{i+1} is obtained from M_{i} by either gluing a tetrahedron to M_{i} along a triangle or by identifying two triangles in ∂M_{i} which already share an edge
(iii) $M_{k}=M$

There is an analogous notion of local construction for 2 and higher-dimensional simplicial manifolds

Facts about LC triangulations

- Any 2-dimensional simplicial manifold with the topology of S^{2} or the 2-disc has a LC
- There is a $C>1$ such that the number of locally constructible triangulations of S^{3} of volume V is bounded by C^{V} (Durhuus and TJ 1995)
- Not all triangulations of S^{3} are locally constructible (Benedetti and Ziegler 2011)

Outline of the proof of the Lemma

- Take a local construction of S
- Use it to obtain an alternative construction of K_{S} : $K_{1}, K_{2}, \ldots, K_{n}=K_{S}$
- K_{1} is a single tetrahedron
- K_{j} is obtained from K_{j-1} by gluing a single tetrahedron along a triangle to ∂K_{j-1} or by identifying two triangles in ∂K_{j-1} which share an edge

- K_{1} is a 3-ball and the topology does not change as we go from K_{j-1} to K_{j} so K_{S} is a 3-ball
- This proves the Lemma and the Main Result
- All the results generalise to the case of sphere-slices with minor modifications

Generalisation to 4 dimensions

- One can generalise the definition of a causal triangulation to any dimension.
- One can generalise the construction of a midsection to 4-dimensional causal slices.
- There are 4 types of 4 -simplicies that arise: $(1,4),(2,3),(3,2)$ and (4,1).
- The midsection is a 3-dimensional cell complex made up of coloured tetrahedra and prisms:

- The midsection is in this case a 3-dimensional cell complex
- These cell complexes are not well understood. In particular, we do not have an exponential bound on their number as a function of the number of 3-cells
- However, if we have an exponential bound on the number of midsections that arise then we obtain an exponential bound on the number of causal 4-dimensional triangulations as a function of the number of 4 -simplicies

Final Remarks

- Bijections between labelled trees and 2-dimensional triangulations have been an important tool in the study of 2-dimensional triangulations in recent years. The bijection we have described here is the first generalisation to 3 dimensions
- Is there a bijection between triangulations of S^{3} and some labelled "2-dimensional structures"?
- There is still work to be done on causal triangulations in 3 dimensions: What midsections arise in a causal slice with given the boundary discs?
- Can we count the number causal slices (with given boundary discs) exactly or get asymptotic results about their number?
- Transfer matrix for 3-dimensional causal triangulations?

