The Laplacian on some round Sierpiński carpets and Weyl's asymptotics for its eigenvalues

Naotaka Kajino (Kobe University) 梶野 直孝(神戸大学)

Physics and Mathematics of Discrete Geometries @Nagoya University, Japan November 7, 2018 18:00-19:00 homeo.

1 Different geometries of the Sierpiński carpet

(generalized) self-similar SCs

Barlow–Bass '89, '99: Constr./Analysis of "B.M." Construction & Analysis of "Laplacian" & "B.M."?

1/12

1/12 **1 Different** geometries of the Sierpiński carpet

(generalized) self-similar SCs

Barlow–Bass '89, '99: Constr./Analysis of "B.M."

round SCs

Construction & Analysis of "Laplacian" & "B.M."?

1/12 **1** Different geometries of the Sierpiński carpet

(generalized) self-similar SCs

Barlow–Bass '89, '99: Constr./Analysis of "B.M."

round SCs Construction & Analysis of "Laplacian" & "B.M."?

Dirichlet form & B.M. on self-similar SCs • A self-similar regular Dirichlet form $(\mathcal{E}, \mathcal{F})$ exists.

(Barlow–Bass '89, '99, Kusuoka–Zhou '92)

BB '89: $\exists 1 \tau > 1$, $\{ Law(\{B_{\tau^n t}^{ref, D_n}\}_{t \ge 0})\}_{n=0}^{\infty}$ is tight.

• Such a regular Dirichlet form (\mathcal{E}, \mathcal{F}) is unique. (Barlow–Bass–Kumagai–Teplyaev '10)

Dirichlet form & B.M. on self-similar SCs

A self-similar regular Dirichlet form (E, F) exists.
 (Barlow–Bass '89, '99, Kusuoka–Zhou '92)

BB '89: $\exists 1 \tau > 1$, $\{ Law(\{B_{\tau^n t}^{ref, D_n}\}_{t \ge 0})\}_{n=0}^{\infty}$ is tight.

• Such a regular Dirichlet form $(\mathcal{E}, \mathcal{F})$ is unique. (Barlow–Bass–Kumagai–Teplyaev '10)

3/12 **1 Different** geometries of the Sierpiński carpet

(generalized) self-similar SCs

Barlow–Bass '89, '99: Constr./Analysis of "B.M."

round SCs Construction & Analysis of "Laplacian" & "B.M."?

 $ightarrow \partial_{\infty}G_{m}$ is a round SC.

 $> \partial_{\infty}G_m := \bigcup_{a \in G_m} g(\partial \mathbb{B}^2)$: limit (i.e., min. cpt inv.) set of G_m

 $>\partial_{\infty}G_m:=\bigcup_{a\in G_m}g(\overline{\partial\mathbb{B}^2})$: limit (i.e., min. cpt inv.) set of G_m

4/12 2 Some Kleinian groups G_m with $\partial_{\infty}G_m$ a RSC $> m > 6 \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} < \pi \right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $arprop \Gamma_{oldsymbol{m}} := ig\langle \{ \mathbf{Inv}_{oldsymbol{\ell}_{oldsymbol{k}}} \}_{oldsymbol{k}=1}^{oldsymbol{3}}ig angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $= G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$ $\sim \partial_{\infty}G_m$ is a round SC.

4/12 2 Some Kleinian groups G_m with $\partial_{\infty}G_m$ a RSC $> m > 6 \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} < \pi \right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_{m} := \left\langle \{ \operatorname{Inv}_{\ell_{k}} \}_{k=1}^{3} ight angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\bullet S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m)$

 $\mathrm{angle}(S,\ell_2)=rac{\pi}{3}.$

 $ightarrow G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$ $ightarrow \partial_{\infty} G_m$ is a round SC.

4/12 2 Some Kleinian groups G_m with $\partial_{\infty}G_m$ a RSC $> m > 6 \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} < \pi \right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_{m} := \left\langle \{ \operatorname{Inv}_{\ell_{k}} \}_{k=1}^{3} ight angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\bullet S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m)$

 $\mathrm{angle}(S,\ell_2)=rac{\pi}{3}.$

 $ightarrow G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$ $ightarrow \partial_{\infty} G_m$ is a round SC.

4/12 2 Some Kleinian groups G_m with $\partial_{\infty}G_m$ a RSC $> m > 6 \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} < \pi \right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_{m} := \left\langle \{ \operatorname{Inv}_{\ell_{k}} \}_{k=1}^{3} ight angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\bullet S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m)$ $\operatorname{angle}(S, \ell_2) = \frac{\pi}{3}.$ $arphi \supset G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$ $\sim \partial_{\infty}G_{m}$ is a round SC.

 $\partial_{\infty}G_m := \bigcup_{a \in G_m} g(\partial \mathbb{B}^2)$: limit (i.e., min. cpt inv.) set of G_m

4/12 2 Some Kleinian groups G_m with $\partial_{\infty}G_m$ a RSC $> m > 6 \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} < \pi \right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_{m} := \left\langle \{ \operatorname{Inv}_{\ell_{k}} \}_{k=1}^{3} ight angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\bullet S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m)$ $\operatorname{angle}(S, \ell_2) = \frac{\pi}{3}.$ $arphi G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$ $\mathcal{A} \rightsquigarrow \partial_{\infty} G_{\boldsymbol{m}}$ is a round SC. $\triangleright \partial_{\infty} G_m := \bigcup_{g \in G_m} g(\partial \mathbb{B}^2)$: limit (i.e., min. cpt inv.) set of G_m

4/12 2 Some Kleinian groups G_m with $\partial_{\infty}G_m$ a RSC $> m > 6 \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} < \pi \right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_m := \langle \{ \operatorname{Inv}_{\ell_k} \}_{k=1}^3 \rangle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\bullet S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m)$ $\operatorname{angle}(S, \ell_2) = \frac{\pi}{3}.$ $\triangleright \partial_{\infty} G_m := \bigcup_{g \in G_m} g(\partial \mathbb{B}^2)$: limit (i.e., min. cpt inv.) set of G_m

4/12 2 Some Kleinian groups G_m with $\partial_{\infty}G_m$ a RSC $>m>6\left(\frac{\pi}{2}+\frac{\pi}{3}+\frac{\pi}{m}<\pi\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_m := \langle \{ \operatorname{Inv}_{\ell_k} \}_{k=1}^3 \rangle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\bullet S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m)$ $\operatorname{angle}(S, \ell_2) = \frac{\pi}{3}.$ $\triangleright \partial_{\infty} G_m := \bigcup_{g \in G_m} g(\partial \mathbb{B}^2)$: limit (i.e., min. cpt inv.) set of G_m

4/12 2 Some Kleinian groups G_m with $\partial_{\infty}G_m$ a RSC $>m>6\left(\frac{\pi}{2}+\frac{\pi}{3}+\frac{\pi}{m}<\pi\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_m := \langle \{ \operatorname{Inv}_{\ell_k} \}_{k=1}^3 \rangle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\bullet S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m)$ $\operatorname{angle}(S, \ell_2) = \frac{\pi}{3}.$ $\triangleright \partial_{\infty} G_m := \bigcup_{g \in G_m} g(\partial \mathbb{B}^2)$: limit (i.e., min. cpt inv.) set of G_m

4/12 2 Some Kleinian groups G_m with $\partial_{\infty}G_m$ a RSC $>m>6\left(\frac{\pi}{2}+\frac{\pi}{3}+\frac{\pi}{m}<\pi\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_m := \left\langle \{ \operatorname{Inv}_{\ell_k} \}_{k=1}^3 ight angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $ullet S = S_m := \partial B_{\mathbb{B}^2}(0, \exists 1 r_m)$ angle $(S, \ell_2) = \frac{\pi}{3}$. $\triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$

4/12 2 Some Kleinian groups G_m with $\partial_{\infty}G_m$ a RSC $>m>6\left(\frac{\pi}{2}+\frac{\pi}{3}+\frac{\pi}{m}<\pi\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $arphi \succ \Gamma_{oldsymbol{m}} := ig\langle \{ \mathbf{Inv}_{oldsymbol{\ell}_{oldsymbol{k}}} \}_{oldsymbol{k}=1}^{oldsymbol{3}}ig angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $ullet S = S_m := \partial B_{\mathbb{B}^2}(0, \exists 1 r_m)$ angle $(S, \ell_2) = \frac{\pi}{3}$. $\triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$

4/12 2 Some Kleinian groups G_m with $\partial_{\infty}G_m$ a RSC $>m>6\left(\frac{\pi}{2}+\frac{\pi}{3}+\frac{\pi}{m}<\pi\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_{m} := \left\langle \{ \operatorname{Inv}_{\ell_{k}} \}_{k=1}^{3} ight angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $ullet S = S_m := \partial B_{\mathbb{B}^2}(0, \exists 1 r_m)$ angle $(S, \ell_2) = \frac{\pi}{3}$. $\triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$

 $>m>6\left(\frac{\pi}{2}+\frac{\pi}{3}+\frac{\pi}{m}<\pi\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_m := \left\langle \{ \operatorname{Inv}_{\ell_k} \}_{k=1}^3
ight
angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\bullet S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m)$ angle $(S, \ell_2) = \frac{\pi}{3}$. $\triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$

4/12

 $>m>6\left(\frac{\pi}{2}+\frac{\pi}{3}+\frac{\pi}{m}<\pi\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_m := \left\langle \{ \operatorname{Inv}_{\ell_k} \}_{k=1}^3
ight
angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $igodot S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1_m)$ angle $(S, \ell_2) = \frac{\pi}{3}$. $\triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$ $\rightsquigarrow \partial_{\infty} G_m$ is a round SC.

4/12

 $>m>6\left(\frac{\pi}{2}+\frac{\pi}{3}+\frac{\pi}{m}<\pi\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_{m} := \left\langle \{ \operatorname{Inv}_{\ell_{k}} \}_{k=1}^{3}
ight
angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\bullet S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m):$ angle $(S, \ell_2) = \frac{\pi}{3}$. $\triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$ $\rightsquigarrow \partial_{\infty} G_m$ is a round SC.

4/12

 $>m>6\left(\frac{\pi}{2}+\frac{\pi}{3}+\frac{\pi}{m}<\pi\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $arprop \Gamma_{m} := ig\langle \{ \operatorname{Inv}_{\ell_{k}} \}_{k=1}^{3} ig
angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\bullet S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m):$ angle $(S, \ell_2) = \frac{\pi}{3}$. $\triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$ $\rightsquigarrow \partial_{\infty} G_m$ is a round SC.

4/12

•(Sullivan '79) $d = d(m) := \dim_{\text{Haus}} \partial_{\infty} G \in (1, 2)$ &

 $> m > 6 \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} \frac{5}{4}\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_{m} := \left\langle \{ \operatorname{Inv}_{\ell_{k}} \}_{k=1}^{3}
ight
angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\Theta S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m)$ angle $(S, \ell_2) = \frac{\pi}{3}$. $\ell_2 \triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$, $\partial_{\infty}G_m := \overline{\bigcup_{g \in G_m} g(\partial \mathbb{B}^2)}$ $\rightsquigarrow \partial_{\infty} G_m$ is a round SC. • $G \curvearrowright \mathbb{H}^3$ is convex-cocpt (so hyperbl.), $\partial_{\operatorname{Grmv}} G \simeq \partial_{\infty} G$

 $> m > 6 \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} \frac{5}{4}\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_{m} := \left\langle \{ \operatorname{Inv}_{\ell_{k}} \}_{k=1}^{3}
ight
angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\Theta S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m)$ angle $(S, \ell_2) = \frac{\pi}{3}$. $\ell_2 \triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$ $\partial_{\infty}G_m := \overline{\bigcup_{g \in G_m} g(\partial \mathbb{B}^2)}$ $\rightsquigarrow \partial_{\infty} G_m$ is a round SC. • $G \cap \mathbb{H}^3$ has no parabolics (so hyperbl.), $\partial_{\mathrm{Grmv}} G \simeq \partial_{\infty} G$

 $> m > 6 \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} \frac{5}{4} \right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $ho \Gamma_{m} := \left\langle \{ \operatorname{Inv}_{\ell_{k}} \}_{k=1}^{3}
ight
angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $\bullet S = S_m := \partial B_{\mathbb{R}^2}(0, \exists 1 r_m):$ $\operatorname{angle}(S, \ell_2) = \frac{\pi}{3}.$ $\ell_2 \triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$ $\partial_{\infty}G_m := \overline{\bigcup_{g \in G_m} g(\partial \mathbb{B}^2)}$ $\rightsquigarrow \partial_{\infty} G_m$ is a round SC. • $G \cap \mathbb{H}^3$ has no parabolics (so hyperbl.), $\partial_{\mathrm{Grmv}} G \simeq \partial_{\infty} G$ •(Sullivan '79) $d = d(m) := \dim_{\text{Haus}} \partial_{\infty} G \in (1,2)$ &

 $> m > 6 \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} \frac{5}{2}\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $hightarrow \Gamma_{oldsymbol{m}} := ig\langle \{ \mathrm{Inv}_{\ell_{oldsymbol{k}}} \}_{k=1}^3 ig
angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $lackslash S = S_m := \partial B_{\mathbb{B}^2}(0, \exists 1 r_m)$ $\operatorname{angle}(S, \ell_2) = \frac{\pi}{3}.$ $\ell_2 \triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$, $\partial_{\infty}G_m := \overline{\bigcup_{g \in G_m} g(\partial \mathbb{B}^2)}$ $\rightsquigarrow \partial_{\infty} G_m$ is a round SC. • $G \cap \mathbb{H}^3$ has no parabolics (so hyperbl.), $\partial_{\mathrm{Grmv}} G \simeq \partial_{\infty} G$ •(Sullivan '79) $d = d(m) := \dim_{\text{Haus}} \partial_{\infty} G \in (1, 2)$ & $\partial_{\infty} G$ is Ahlfors reg., so $\mathcal{H}^d|_{\partial_{\infty} G}$ is finite & full support.

 $> m > 6 \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} \frac{5}{2}\right)$ $\triangleright \{\ell_k\}_{k=1}^3$: \mathbb{B}^2 -geodesics, form \triangle , angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$ $arprop \Gamma_{oldsymbol{m}} := ig\langle \{ \mathrm{Inv}_{oldsymbol{\ell}_{oldsymbol{k}}} \}_{oldsymbol{k}=1}^{oldsymbol{3}}ig
angle$ $\sim \mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\triangle_{\ell_1 \ell_2 \ell_3})$ $lackslash S = S_m := \partial B_{\mathbb{B}^2}(0, \exists 1 r_m)$ $\operatorname{angle}(S, \ell_2) = \frac{\pi}{3}.$ $\ell_2 \triangleright G = G_m := \langle \Gamma_m, \operatorname{Inv}_S \rangle$ $\partial_{\infty}G_m := \overline{\bigcup_{g \in G_m} g(\partial \mathbb{B}^2)}$ $\rightsquigarrow \partial_{\infty} G_m$ is a round SC. • $G \cap \mathbb{H}^3$ has no parabolics (so hyperbl.), $\partial_{\mathrm{Grmv}} G \simeq \partial_{\infty} G$ •(Sullivan '79) $d = d(m) := \dim_{\text{Haus}} \partial_{\infty} G \in (1, 2)$ & $\mathcal{H}^{d}(B_{r}(x) \cap \partial_{\infty}G) \asymp r^{d}$, so $\mathcal{H}^{d}|_{\partial_{\infty}G}$ is finite & full supp.

3 Results for Apollonian gasket: $K_{\alpha,\beta,\gamma_{embedding}}$ \square Thm(K., *cf.* Teplyaev '04). $\exists^1(\mathcal{E}^{\alpha,\beta,\gamma},\mathcal{F}^{\alpha,\beta,\gamma})$: str. local, irreducible, regular symmetric Dirichlet form over $K_{lpha,eta,\gamma}$, h_x, h_y are $\mathcal{E}^{\alpha,\beta,\gamma}$ -harmonic on $K_{\alpha,\beta,\gamma} \setminus V_0!$ Rmk. Choice of a reference measure is irrelevant: $\alpha \in \alpha$ $\mathcal{C}^{\alpha,\beta,\gamma} := \mathcal{F}^{\alpha,\beta,\gamma} \cap C(K_{\alpha,\beta,\gamma})$ and $\mathcal{E}^{\alpha,\beta,\gamma}|_{\mathcal{C}^{\alpha,\beta,\gamma}}$ are unique.

3 Results for Apollonian gasket: $K_{\alpha,\beta,\gamma_{embedding}}$ \square Thm(K., *cf.* Teplyaev '04). $\exists^1 (\mathcal{E}^{\alpha,\beta,\gamma}, \mathcal{F}^{\alpha,\beta,\gamma})$: str. local, irreducible, regular symmetric Dirichlet form over $K_{lpha,eta,\gamma}$, h_x, h_y are $\mathcal{E}^{\alpha,\beta,\gamma}$ -harmonic on $K_{\alpha,\beta,\gamma} \setminus V_0!$ **Rmk.** Choice of a reference measure is irrelevant: $\mathcal{C}^{\alpha,\beta,\gamma} := \mathcal{F}^{\alpha,\beta,\gamma} \cap C(K_{\alpha,\beta,\gamma})$ and $\mathcal{E}^{\alpha,\beta,\gamma}|_{\mathcal{C}^{\alpha,\beta,\gamma}}$ are unique.

3 Results for Apollonian gasket: $K_{\alpha,\beta,\gamma_{embedding}}$ Thm(K., *cf.* Teplyaev '04). $\exists^1 (\mathcal{E}^{\alpha,\beta,\gamma}, \mathcal{F}^{\alpha,\beta,\gamma})$: str. local, irreducible, regular symmetric Dirichlet form over $K_{lpha,eta,\gamma}$, h_x, h_y are $\mathcal{E}^{\alpha, \beta, \gamma}$ -harmonic on $K_{\alpha, \beta, \gamma} \setminus V_0!$ **Rmk.** Choice of a reference measure is irrelevant: $\mathcal{C}^{\alpha,\beta,\gamma} := \mathcal{F}^{\alpha,\beta,\gamma} \cap C(K_{\alpha,\beta,\gamma})$ and $\mathcal{E}^{\alpha,\beta,\gamma}|_{\mathcal{C}^{\alpha,\beta,\gamma}}$ are unique. Thm(K.). LIP|_{$K_{\alpha,\beta,\gamma}$} is a core of $(\mathcal{E}^{\alpha,\beta,\gamma}, \mathcal{F}^{\alpha,\beta,\gamma})$, and $^{\forall} u \in \mathrm{LIP}, \ \mathcal{E}^{\alpha,\beta,\gamma}(u,u) = \sum_{C \subset \mathrm{arc}^{K}_{\alpha,\beta,\gamma}} \mathrm{rad}(C) \int_{C} |\nabla_{C} u|^{2} d\mathrm{vol}_{C}.$
3 Results for Apollonian gasket: $K_{\alpha,\beta,\gamma_{embedding}}$ Thm(K., *cf.* Teplyaev '04). $\exists 1(\mathcal{E}^{\alpha,\beta,\gamma}, \mathcal{F}^{\alpha,\beta,\gamma})$: str. local, irreducible, regular symmetric Dirichlet form over $K_{lpha,eta,\gamma}$, h_x, h_y are $\mathcal{E}^{\alpha, \beta, \gamma}$ -harmonic on $K_{\alpha, \beta, \gamma} \setminus V_0!$ **Rmk.** Choice of a reference measure is irrelevant: $\mathcal{C}^{\alpha,\beta,\gamma} := \mathcal{F}^{\alpha,\beta,\gamma} \cap C(K_{\alpha,\beta,\gamma})$ and $\mathcal{E}^{\alpha,\beta,\gamma}|_{\mathcal{C}^{\alpha,\beta,\gamma}}$ are unique. Thm(K.). LIP|_{$K_{\alpha,\beta,\gamma}$} is a core of $(\mathcal{E}^{\alpha,\beta,\gamma}, \mathcal{F}^{\alpha,\beta,\gamma})$, and $\forall u \in \text{LIP}, \ \mathcal{E}^{\alpha,\beta,\gamma}(u,u) = \sum_{C \subset \operatorname{arc} K_{\alpha,\beta,\gamma}} \operatorname{rad}(C) \int_C |\nabla_C u|^2 d\operatorname{vol}_C.$ $\triangleright \mu^{\alpha,\beta,\gamma} := \sum_{C \subset \operatorname{arc} K_{\alpha,\beta,\gamma}} \operatorname{rad}(C) d\operatorname{vol}_C : \operatorname{volume meas.}_{(\operatorname{NOT doubling}!)}$

3 Results for Apollonian gasket: $K_{\alpha,\beta,\gamma}$ embedding Thm(K., *cf.* Teplyaev '04). $\exists 1(\mathcal{E}^{\alpha,\beta,\gamma}, \mathcal{F}^{\alpha,\beta,\gamma})$: str. local, irreducible, regular symmetric Dirichlet form over $K_{lpha,eta,\gamma}$, h_x, h_y are $\mathcal{E}^{\alpha,\beta,\gamma}$ -harmonic on $K_{\alpha,\beta,\gamma} \setminus V_0!$ **Rmk.** Choice of a reference measure is irrelevant: $\mathcal{C}^{\alpha,\beta,\gamma} := \mathcal{F}^{\alpha,\beta,\gamma} \cap C(K_{\alpha,\beta,\gamma})$ and $\mathcal{E}^{\alpha,\beta,\gamma}|_{\mathcal{C}^{\alpha,\beta,\gamma}}$ are unique. Thm(K.). LIP|_{$K_{\alpha,\beta,\gamma}$} is a core of $(\mathcal{E}^{\alpha,\beta,\gamma}, \mathcal{F}^{\alpha,\beta,\gamma})$, and $\forall u \in \text{LIP}, \ \mathcal{E}^{\alpha,\beta,\gamma}(u,u) = \sum_{C \subset \operatorname{arc} K_{\alpha,\beta,\gamma}} \operatorname{rad}(C) \int_C |\nabla_C u|^2 d\operatorname{vol}_C.$ $\triangleright \mu^{\alpha,\beta,\gamma} := \sum_{C \subset \operatorname{arc} K_{\alpha,\beta,\gamma}} \operatorname{rad}(C) d\operatorname{vol}_C : \operatorname{volume meas.}_{(\operatorname{NOT doubling}!)}$ Thm(K.). $\exists c_0 \in (0,\infty)$, $\forall \alpha, \beta, \gamma \in (0,\infty)$, $\lim_{\lambda o\infty} \#\{n\in\mathbb{N}\mid\lambda_n^{lpha,eta,\gamma}\!\leq\!\lambda\}/\lambda^{d/2}\!=c_0\mathcal{H}^d(K_{lpha,eta,\gamma}).$

4 Laplacian on the limit set $\partial_{\infty}G$ of $G = G_m$

7/12

 $cf. \, \mathcal{E}^{\alpha,\beta,\gamma}(u,u) = \sum_{C \subset \operatorname{arc} K_{\alpha,\beta,\gamma}} \operatorname{rad}(C) \int_C |\nabla_C u|^2 \, d\operatorname{vol}_C,$ $\mu^{\alpha,\beta,\gamma} = \sum_{C \subset \operatorname{arc} K_{\alpha,\beta,\gamma}} \operatorname{rad}(C) \, d\operatorname{vol}_C.$

4 Laplacian on the limit set $\partial_{\infty}G$ of $G = G_m$

7/12

 $\triangleright \mathcal{G} := \{g \in \mathsf{M\"ob}(\widehat{\mathbb{C}}) \mid g^{-1}(\infty) \in \widehat{\mathbb{C}} \setminus \overline{\mathbb{B}^2} \}$ $\triangleright K_0 := \mathbb{B}^2 \cap \partial_{\infty} G, \ K_g := g(K_0) \begin{pmatrix} g \in \mathcal{G} \text{ represents} \\ \mathsf{choice of initial} \, \Delta \end{pmatrix}$

 $ho \mathcal{G} := \{g \in \mathsf{M\"ob}(\widehat{\mathbb{C}}) \mid g^{-1}(\infty) \in \widehat{\mathbb{C}} \setminus \overline{\mathbb{B}^2}\}$ $ho K_0 := \mathbb{B}^2 \cap \partial_{\infty} G, \quad K_g := g(K_0)$

For each $g \in \mathcal{G}$, on $K_g = g(K_0)$ DEFINE:

$\triangleright \nu^{g} := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \operatorname{dvol}_{C} (\operatorname{NOT doubling!})$ $\triangleright^{\forall} u \in \operatorname{LIP}_{K_{g}}, \, \mathcal{E}^{g}(u, u) := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \int_{C} |\nabla_{C} u|^{2} \operatorname{dvol}_{C} (cf. \operatorname{Osada} \operatorname{'07})$

Prop. On $L^2(K_g, \nu^g)$, $(\mathcal{E}^g, \operatorname{LIP}_c(K_g))$ is closable & its closure $(\mathcal{E}^g, \mathcal{F}_g)$ is a strongly local regular Dirichlet form.

Prop. The inclusion map $l: K_g \hookrightarrow \mathbb{R}^2$ is \mathcal{E}^g -harmonic. (uniqueness) (NOT known)

 $ho \mathcal{G} := \{g \in \mathsf{M\"ob}(\widehat{\mathbb{C}}) \mid g^{-1}(\infty) \in \widehat{\mathbb{C}} \setminus \overline{\mathbb{B}^2}\}$ $ho K_0 := \mathbb{B}^2 \cap \partial_{\infty} G, \quad K_g := g(K_0)$

- For each $g \in \mathcal{G}$, on $K_g = g(K_0)$ DEFINE:
- $\triangleright \nu^g := \sum_{C \subset \operatorname{arc} K_g} \operatorname{rad}(C) \operatorname{dvol}_C$ (NOT doubling!) $\triangleright^{\forall} u \in \mathrm{LIP}|_{K_g}, \ \mathcal{E}^g(u, u) := \sum_{C \subset \mathrm{arc}\,K_g} \mathrm{rad}(C) \int_C |\nabla_C u|^2 \, d\mathrm{vol}_C \, (cf. \, \mathrm{Osada} \, '\mathrm{O7})$

 $hightarrow \mathcal{G} := \{g \in \mathsf{M\"ob}(\widehat{\mathbb{C}}) \mid g^{-1}(\infty) \in \widehat{\mathbb{C}} \setminus \overline{\mathbb{B}^2}\}$

 $\triangleright K_0 := \mathbb{B}^2 \cap \partial_{\infty} G, \quad K_g := g(K_0)$

For each $g \in \mathcal{G}$, on $K_g = g(K_0)$ DEFINE:

$$\triangleright \nu^{g} := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \operatorname{dvol}_{C} (\operatorname{NOT doubling!})$$

$$\triangleright^{\forall} u \in \operatorname{LIP}|_{K_{g}}, \ \mathcal{E}^{g}(u, u) := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \int_{C} |\nabla_{C} u|^{2} \operatorname{dvol}_{C} (cf. \operatorname{Osada'07})$$

Prop. On $L^2(K_g, \nu^g)$, $(\mathcal{E}^g, \operatorname{LIP}_c(K_g))$ is closable & its closure $(\mathcal{E}^g, \mathcal{F}_g)$ is a strongly local regular Dirichlet form.

Prop. The inclusion map $l: K_g \hookrightarrow \mathbb{R}^2$ is \mathcal{E}^g -harmonic. (uniqueness) (NOT known)

 $hightarrow \mathcal{G} := \{g \in \mathsf{M\"ob}(\widehat{\mathbb{C}}) \mid g^{-1}(\infty) \in \widehat{\mathbb{C}} \setminus \overline{\mathbb{B}^2}\}$

 $\triangleright K_0 := \mathbb{B}^2 \cap \partial_{\infty} G, \quad K_g := g(K_0)$

For each $g \in \mathcal{G}$, on $K_g = g(K_0)$ DEFINE:

$$\triangleright \nu^g := \sum_{C \subset \operatorname{arc} K_g} \operatorname{rad}(C) \operatorname{dvol}_C (\operatorname{NOT doubling!})$$

$$\triangleright^{\forall} u \in \operatorname{LIP}|_{K_g}, \ \mathcal{E}^g(u, u) := \sum_{C \subset \operatorname{arc} K_g} \operatorname{rad}(C) \int_C |\nabla_C u|^2 \operatorname{dvol}_C (cf. \operatorname{Osada'07})$$

Prop. On $L^2(K_g, \nu^g)$, $(\mathcal{E}^g, \operatorname{LIP}_c(K_g))$ is closable & its closure $(\mathcal{E}^g, \mathcal{F}_g)$ is a strongly local regular Dirichlet form.

Prop. The inclusion map $l: K_g \hookrightarrow \mathbb{R}^2$ is \mathcal{E}^g -harmonic. (uniqueness) NOT known)

 $hinspace{1.5}
hinspace{1.5} {\mathcal{G}} := \{g \in \mathsf{M\"ob}(\widehat{\mathbb{C}}) \mid g^{-1}(\infty) \in \widehat{\mathbb{C}} \setminus \overline{\mathbb{B}^2}\}$

 $\triangleright K_0 := \mathbb{B}^2 \cap \partial_{\infty} G, \quad K_g := g(K_0)$

For each $g \in \mathcal{G}$, on $K_g = g(K_0)$ DEFINE:

$$\triangleright \nu^{g} := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \operatorname{dvol}_{C} (\operatorname{NOT doubling!})$$

$$\triangleright^{\forall} u \in \operatorname{LIP}|_{K_{g}}, \ \mathcal{E}^{g}(u, u) := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \int_{C} |\nabla_{C} u|^{2} \operatorname{dvol}_{C} (cf. \operatorname{Osada'07})$$

Prop. On $L^2(K_g, \nu^g)$, $(\mathcal{E}^g, \operatorname{LIP}_c(K_g))$ is closable & its closure $(\mathcal{E}^g, \mathcal{F}_g)$ is a strongly local regular Dirichlet form.

Prop. The inclusion map $l: K_g \hookrightarrow \mathbb{R}^2$ is \mathcal{E}^g -harmonic. **Prop.** $\Delta_{(K_g, \nu^g, \mathcal{E}^g, \mathcal{F}_g)}$ has discrete spectrum. (NOT known)

9/12 $\triangleright g \in \mathcal{G}$ (represents choice of the initial \mathbb{B}^2 - \triangle) **Prop.** $\Delta_{(K_a,\nu^g,\mathcal{E}^g,\mathcal{F}_a)}$ has discrete spectrum. $\triangleright \{\lambda_n^{g,U}\}_{n \in \mathbb{N}}$: the eigenvalues of $-\Delta_{(U,\nu^g,\mathcal{E}^g,\mathcal{F}_g)}$ $\triangleright \mathcal{N}_{g,U}(\lambda) := \#\{n \in \mathbb{N} \mid \lambda_n^{g,U} \leq \lambda\} \ (\emptyset \neq U_{\subset K_q} \text{ open})$

 $\mathsf{Rmk}(\mathsf{K}.). \ \nu^g \perp \mathfrak{H}^d|_{K_g}$ (for $\mathfrak{H}^d(\mathsf{arcs}) = 0$ by d > 1).

9/12 $\triangleright g \in \mathcal{G}$ (represents choice of the initial \mathbb{B}^2 - \triangle) **Prop.** $\Delta_{(K_q,\nu^g,\mathcal{E}^g,\mathcal{F}_q)}$ has discrete spectrum. $> \{\lambda_n^{g,U}\}_{n \in \mathbb{N}}$: the eigenvalues of $-\Delta_{(U,\nu^g,\mathcal{E}^g,\mathcal{F}_g)}$ $\triangleright \mathcal{N}_{g,U}(\lambda) := \#\{n \in \mathbb{N} \mid \lambda_n^{g,U} \leq \lambda\} \ (\emptyset \neq U_{\subset K_a} \text{ open})$

 $\mathcal{H}^{d}(\partial_{K_{g}}U) = 0 \Rightarrow \lim_{\lambda \to \infty} \lambda^{-d/2} \mathcal{N}_{g,U}(\lambda) = c_{m} \mathcal{H}^{d}(U).$

 $\mathsf{Rmk}(\mathsf{K}.). \ \nu^g \perp \mathfrak{H}^d|_{K_g}$ (for $\mathfrak{H}^d(\mathrm{arcs}) = 0$ by d > 1).

9/12 $\triangleright g \in \mathcal{G}$ (represents choice of the initial \mathbb{B}^2 - \triangle) **Prop.** $\Delta_{(K_q,\nu^g,\mathcal{E}^g,\mathcal{F}_q)}$ has discrete spectrum. $> \{\lambda_n^{g,U}\}_{n \in \mathbb{N}}$: the eigenvalues of $-\Delta_{(U,\nu^g,\mathcal{E}^g,\mathcal{F}_g)}$ $\triangleright \mathcal{N}_{g,U}(\lambda) := \#\{n \in \mathbb{N} \mid \lambda_n^{g,U} \leq \lambda\} \ (\emptyset \neq U_{\subset K_g} \text{ open})$ Thm (K.). $\exists c_m \in (0,\infty), \forall g \in \mathcal{G}, \ _{\emptyset \neq} \forall U \Subset K_g$ open,

 $\mathsf{Rmk}(\mathsf{K}.). \ \nu^g \perp \mathfrak{H}^d|_{K_g}$ (for $\mathfrak{H}^d(\mathsf{arcs}) = 0$ by d > 1).

9/12 $\triangleright g \in \mathcal{G}$ (represents choice of the initial \mathbb{B}^2 - \triangle) **Prop.** $\Delta_{(K_q,\nu^g,\mathcal{E}^g,\mathcal{F}_q)}$ has discrete spectrum. $\triangleright \{\lambda_n^{g,U}\}_{n \in \mathbb{N}}$: the eigenvalues of $-\Delta_{(U,\nu^g,\mathcal{E}^g,\mathcal{F}_g)}$ $\triangleright \mathcal{N}_{g,U}(\lambda) := \#\{n \in \mathbb{N} \mid \lambda_n^{g,U} \leq \lambda\} \ (\emptyset \neq U_{\subset K_g} \text{ open})$ Thm (K.). $\exists c_m \in (0,\infty), \forall g \in \mathcal{G}, \ _{\emptyset \neq} \forall U \Subset K_g$ open, $\mathcal{H}^{d}(\partial_{K_{g}}U) = 0 \Rightarrow \lim_{\lambda \to \infty} \lambda^{-d/2} \mathcal{N}_{g,U}(\lambda) = c_{m}\mathcal{H}^{d}(U).$

 $\mathsf{Rmk}(\mathsf{K}.). \ \nu^g \perp \mathfrak{H}^d|_{K_g}$ (for $\mathfrak{H}^d(\mathsf{arcs}) = 0$ by d > 1).

9/12 $\triangleright g \in \mathcal{G}$ (represents choice of the initial \mathbb{B}^2 - \triangle) **Prop.** $\Delta_{(K_q,\nu^g,\mathcal{E}^g,\mathcal{F}_q)}$ has discrete spectrum. $\triangleright \{\lambda_n^{g,U}\}_{n \in \mathbb{N}}$: the eigenvalues of $-\Delta_{(U,\nu^g,\mathcal{E}^g,\mathcal{F}_g)}$ $\triangleright \mathcal{N}_{g,U}(\lambda) := \#\{n \in \mathbb{N} \mid \lambda_n^{g,U} \leq \lambda\} \ (\emptyset \neq U_{\subset K_g} \text{ open})$ Thm (K.). $\exists c_m \in (0,\infty), \forall g \in \mathcal{G}, \ _{\emptyset \neq} \forall U \Subset K_g$ open, $\mathcal{H}^d(\partial_{K_g}U) = 0 \Rightarrow \lim_{\lambda \to \infty} \lambda^{-d/2} \mathcal{N}_{g,U}(\lambda) = c_m \mathcal{H}^d(U).$

 $\mathsf{Rmk}(\mathsf{K}.). \
u^g \perp \mathfrak{H}^d|_{K_g}$ (for $\mathfrak{H}^d(\operatorname{arcs}) = 0$ by d > 1).

9/12 $\triangleright g \in \mathcal{G}$ (represents choice of the initial \mathbb{B}^2 - \triangle) **Prop.** $\Delta_{(K_q,\nu^g,\mathcal{E}^g,\mathcal{F}_q)}$ has discrete spectrum. $\triangleright \{\lambda_n^{g,U}\}_{n \in \mathbb{N}}$: the eigenvalues of $-\Delta_{(U,\nu^g,\mathcal{E}^g,\mathcal{F}_g)}$ $\triangleright \mathcal{N}_{g,U}(\lambda) := \#\{n \in \mathbb{N} \mid \lambda_n^{g,U} \leq \lambda\} \ (\emptyset \neq U_{\subset K_g} \text{ open})$ $\mathsf{Rmk}(\mathsf{K}.). \ \nu^g \perp \mathfrak{H}^d|_{K_q}$ (for $\mathfrak{H}^d(\operatorname{arcs}) = 0$ by d > 1).

Rmk. $\sum_{n} e^{-t\lambda_{n}^{g,U}} = \int_{U} p_{t}^{g,U}(x,x) d\nu^{g}(x) \stackrel{t\downarrow 0}{\sim} c\mathcal{H}^{d}(U) t^{-d/2}$

⇔ Thm, BUT

9/12 $ightarrow g \in \mathcal{G}$ (represents choice of the initial \mathbb{B}^2 -riangle) **Prop.** $\Delta_{(K_g,\nu^g,\mathcal{E}^g,\mathcal{F}_g)}$ has discrete spectrum. $\triangleright \{\lambda_n^{g,U}\}_{n \in \mathbb{N}}$: the eigenvalues of $-\Delta_{(U,\nu^g,\mathcal{E}^g,\mathcal{F}_g)}$ $\triangleright \mathcal{N}_{g,U}(\lambda) := \#\{n \in \mathbb{N} \mid \lambda_n^{g,U} \leq \lambda\} \ (\emptyset \neq U_{\subset K_g} \text{ open})$ $\mathsf{Rmk}(\mathsf{K.}). \ \nu^g \perp \mathfrak{H}^d|_{K_g}$ (for $\mathfrak{H}^d(\operatorname{arcs}) = 0$ by d > 1).

 $\begin{array}{l} \mathsf{Rmk.} \sum_{n} e^{-t\lambda_{n}^{g,U}} = \int_{U} p_{t}^{g,U}(x,x) d\nu^{g}(x) \overset{t\downarrow 0}{\sim} c\mathcal{H}^{d}(U) t^{-d/2} \\ \Leftrightarrow \mathsf{Thm, BUT} \ p_{t}^{g,U}(x,x) \asymp_{c_{x}} t^{-1/2} \ \mathsf{for} \ \nu^{g} \mathsf{-a.e.} \ x \in U! \end{array}$

- A "self-similar" decomp. ("fund. dom." for $G \cap \partial_{\infty} G$) (requires concrete knowledge of $G \cap \partial_{\infty} G$; NOT extend easily)
- A version of the "2-dimensional" Nash inequality (\rightsquigarrow the spectrum of Δ_{K_g} is discrete & $\exists p_t^{K_g}(x,y) \leq c_g t^{-1}$) • $\iota: K_g \hookrightarrow \mathbb{R}^2$ is \mathcal{E}^g -harmonic & $\Gamma_{\mathcal{E}^g}(\iota, \iota) = \nu^g$ ($\rightsquigarrow \{\langle X^g, z \rangle\}_t$ slower than $\{B_t^{\mathbb{R}}\}_t \rightsquigarrow \mathbb{P}_q[\tau_{\mathcal{D}}(z, v) \leq t]$ small)

- A "self-similar" decomp. ("fund. dom." for $G \cap \partial_{\infty} G$) (requires concrete knowledge of $G \cap \partial_{\infty} G$; NOT extend easily)
- A version of the "2-dimensional" Nash inequality (\rightsquigarrow the spectrum of Δ_{K_g} is discrete & ${}^{\exists}p_t^{K_g}(x,y) \leq c_g t^{-1}$)
- $l: K_g \hookrightarrow \mathbb{R}^2$ is \mathcal{E}^g -harmonic & $\Gamma_{\mathcal{E}^g}(\iota, \iota) = \nu^g$ $(\rightsquigarrow \{\langle X_t^g, z \rangle\}_t$ slower than $\{B_t^{\mathbb{R}}\}_t \rightsquigarrow \mathbb{P}_x[\tau_{B(x,r)} \leq t]$ small!)
- $\triangleright \nu^{g} := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \operatorname{dvol}_{C} (\operatorname{NOT doubling!})$ $\triangleright^{\forall} u \in \operatorname{LIP}|_{K_{g}}, \, \mathcal{E}^{g}(u, u) := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \int_{C} |\nabla_{C} u|^{2} \operatorname{dvol}_{C} (cf. \operatorname{Osada'07})$

- A "self-similar" decomp. ("fund. dom." for $G \cap \partial_{\infty} G$) (requires concrete knowledge of $G \cap \partial_{\infty} G$; NOT extend easily)
- A version of the "2-dimensional" Nash inequality (\rightsquigarrow the spectrum of Δ_{K_g} is discrete & $\exists p_t^{K_g}(x,y) \leq c_g t^{-1}$)
- $l: K_g \hookrightarrow \mathbb{R}^2$ is \mathcal{E}^g -harmonic & $\Gamma_{\mathcal{E}^g}(\iota, \iota) = \nu^g$ $(\rightsquigarrow \{\langle X_t^g, z \rangle\}_t$ slower than $\{B_t^{\mathbb{R}}\}_t \rightsquigarrow \mathbb{P}_x[\tau_{B(x,r)} \leq t]$ small!)
- $\triangleright \nu^{g} := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \operatorname{dvol}_{C} (\operatorname{NOT doubling!})$ $\triangleright^{\forall} u \in \operatorname{LIP}|_{K_{g}}, \, \mathcal{E}^{g}(u, u) := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \int_{C} |\nabla_{C} u|^{2} \operatorname{dvol}_{C} (cf. \operatorname{Osada'07})$

- A "self-similar" decomp. ("fund. dom." for $G \cap \partial_{\infty} G$) (requires concrete knowledge of $G \cap \partial_{\infty} G$; NOT extend easily)
- A version of the "2-dimensional" Nash inequality (\rightsquigarrow the spectrum of Δ_{K_g} is discrete & $\exists p_t^{K_g}(x,y) \leq c_g t^{-1}$) • $\boldsymbol{l}: K_g \hookrightarrow \mathbb{R}^2$ is \mathcal{E}^g -harmonic & $\Gamma_{\mathcal{E}^g}(\iota, \iota) = \nu^g$
 - $(\rightsquigarrow \{\langle X_t^g, z \rangle\}_t \text{ slower than } \{B_t^{\mathbb{R}}\}_t \rightsquigarrow \mathbb{P}_x[au_{B(x,r)} \leq t] \text{ small!})$
- (Grigor'yan-Hu-Lau'10) Bound for $p_t^{K_g}(x,x) p_t^U(x,x)$ in terms of $\sup_{s \in [t/2,t]} p_s^{K_g}(x,\cdot)|_{\partial_{K_g}U} \& \mathbb{P}_x[\tau_U \leq t]$

- A "self-similar" decomp. ("fund. dom." for $G \cap \partial_{\infty} G$) (requires concrete knowledge of $G \cap \partial_{\infty} G$; NOT extend easily)
- A version of the "2-dimensional" Nash inequality (\rightsquigarrow the spectrum of Δ_{K_g} is discrete & ${}^{\exists}p_t^{K_g}(x,y) \leq c_g t^{-1}$)
- $l: K_g \hookrightarrow \mathbb{R}^2$ is \mathcal{E}^g -harmonic & $\Gamma_{\mathcal{E}^g}(\iota, \iota) = \nu^g$ $(\rightsquigarrow \{\langle X_t^g, z \rangle\}_t$ slower than $\{B_t^{\mathbb{R}}\}_t \rightsquigarrow \mathbb{P}_x[\tau_{B(x,r)} \leq t]$ small!)
- (Grigor'yan-Hu-Lau'10) Bound for $p_t^{K_g}(x,x) p_t^U(x,x)$ in terms of $\sup_{s \in [t/2,t]} p_s^{K_g}(x,\cdot)|_{\partial_{K_g}U} \& \mathbb{P}_x[\tau_U \leq t]$
- •(*cf.* Bonk '11) The circles in $\partial_{\infty}G$ are unif. rel. separated: $\forall j \neq k, \operatorname{dist}(C_j, C_k) \geq \delta_m \min\{\operatorname{rad}(C_j), \operatorname{rad}(C_k)\}.$

6 Open Problem: OTHER round SCs?

- RSCs appearing as ∂_{Grmv} of general hyperbl. *G*?
- RSCs obtained as quasi-sym. images of s.-s. SCs?

6 Open Problem: OTHER round SCs?

- RSCs appearing as ∂_{Grmv} of general hyperbl. *G*?
- RSCs obtained as quasi-sym. images of s.-s. SCs?

(generalized) self-similar SCs

Bonk '11: Each of them can be quasi-symmetrically mapped to a round SC in a unique way!

 $\begin{array}{l} \text{Thm}(\mathsf{K}.). \ ^{\exists}c_{0} \in (0,\infty), \ ^{\forall}\alpha,\beta,\gamma \in (0,\infty),\\ \lim_{\lambda \to \infty} \#\{n \in \mathbb{N} \mid \lambda_{n}^{\alpha,\beta,\gamma} \leq \lambda\}/\lambda^{d/2} = c_{0} \mathcal{H}^{d}(K_{\alpha,\beta,\gamma}). \end{array}$

Prf. To follow Kigami–Lapidus' method [CMP '93], we use Kesten's renewal thm for Markov chains [Ann. Prob. '74].

 $\triangleright K_x \setminus V_0 = \bigcup_{k=1}^6 \bigcup_{l=1}^\infty K_{\phi_{k,l}(x)}$ $\triangleright \Gamma := \{ x_{=(\alpha,\beta,\gamma)} | \mathcal{H}^d(K_x) = 1 \}$ (the space of "Euc. shapes" of AGs)

 $arproptop \{ [X_n] \}_{n=0}^{\infty}$: Markov chain on Γ $x \sim [\phi_{k,l}(x)]$ w.prob. $\mathcal{H}^d(K_{\phi_{k,l}(x)})$ (note $\sum_{k,l} \mathcal{H}^d(K_{\phi_{k,l}(x)}) = 1$) $arproptop V_n := -rac{1}{d} \log \mathcal{H}^d(K_{X_n})$

$$\mathsf{Thm}(\mathsf{K}.). \ \exists c_0 \in (0,\infty), \ \forall \alpha,\beta,\gamma \in (0,\infty), \\ \lim_{\lambda \to \infty} \#\{n \in \mathbb{N} \mid \lambda_n^{\alpha,\beta,\gamma} \leq \lambda\}/\lambda^{d/2} = c_0 \mathcal{H}^d(K_{\alpha,\beta,\gamma}).$$

Prf. To follow Kigami–Lapidus' method [CMP '93], we use Kesten's renewal thm for Markov chains [Ann. Prob. '74]. $\triangleright K_x \setminus V_0 = \bigcup_{k=1}^6 \bigcup_{l=1}^\infty K_{\phi_{k,l}(x)}$

 $\triangleright V_n := -rac{1}{d}\log \mathcal{H}^d(K_{X_n})$

p. 30, Figure 3 of R. D. Mauldin & M. Urbański, Adv. Math. 136 (1998), 26–38

10/10

$$\mathsf{Thm}(\mathsf{K}.). \ \exists c_0 \in (0,\infty), \ \forall \alpha,\beta,\gamma \in (0,\infty), \\ \lim_{\lambda \to \infty} \#\{n \in \mathbb{N} \mid \lambda_n^{\alpha,\beta,\gamma} \leq \lambda\}/\lambda^{d/2} = c_0 \mathcal{H}^d(K_{\alpha,\beta,\gamma}).$$

Prf. To follow Kigami–Lapidus' method [CMP '93], we use Kesten's renewal thm for Markov chains [Ann. Prob. '74].

$$\triangleright K_x \setminus V_0 = \bigcup_{k=1}^6 \bigcup_{l=1}^\infty K_{\phi_{k,l}(x)}$$
$$\triangleright \Gamma := \{ x_{=(\alpha,\beta,\gamma)} | \mathcal{H}^d(K_x) = 1 \}$$
(the space of "Euc. shapes" of AGs)

12/12

 $arproptop \{ [X_n] \}_{n=0}^{\infty}$: Markov chain on Γ $x
ightarrow [\phi_{k,l}(x)]$ w.prob. $\mathcal{H}^d(K_{\phi_{k,l}(x)})$ (note $\sum_{k,l} \mathcal{H}^d(K_{\phi_{k,l}(x)}) = 1$)

$\triangleright V_n := -rac{1}{d}\log \mathcal{H}^d(K_{X_n})$

p. 30, Figure 3 of R. D. Mauldin & M. Urbański, Adv. Math. 136 (1998), 26–38

$$\begin{array}{l} 13/12\\ \mathsf{Thm}(\mathsf{K}.). \ ^{\exists}c_{0} \in (0,\infty), \ ^{\forall}\alpha,\beta,\gamma \in (0,\infty),\\ \lim_{\lambda \to \infty} \#\{n \in \mathbb{N} \mid \lambda_{n}^{\alpha,\beta,\gamma} \leq \lambda\}/\lambda^{d/2} = c_{0} \mathcal{H}^{d}(K_{\alpha,\beta,\gamma}). \end{array}$$

Prf. To follow Kigami–Lapidus' method [CMP '93], we use Kesten's renewal thm for Markov chains [Ann. Prob. '74].

 $\triangleright K_x \setminus V_0 = \bigcup_{k=1}^6 \bigcup_{l=1}^\infty K_{\phi_{k,l}(x)}$ $\triangleright \Gamma := \{ x_{=(\alpha,\beta,\gamma)} | \mathcal{H}^d(K_x) = 1 \}$ (the space of "Euc. shapes" of AGs)

 $igsquare \{ [X_n] \}_{n=0}^{\infty}$: Markov chain on Γ , $x \sim [\phi_{k,l}(x)]$ w.prob. $\mathcal{H}^d(K_{\phi_{k,l}(x)})$ (note $\sum_{k,l} \mathcal{H}^d(K_{\phi_{k,l}(x)}) = 1$)

p. 30, Figure 3 of R. D. Mauldin & M. Urbański, Adv. Math. 136 (1998), 26–38

$$\begin{array}{l} 13/12\\ \mathsf{Thm}(\mathsf{K}.). \ ^{\exists}c_{0} \in (0,\infty), \ ^{\forall}\alpha,\beta,\gamma \in (0,\infty),\\ \lim_{\lambda \to \infty} \#\{n \in \mathbb{N} \mid \lambda_{n}^{\alpha,\beta,\gamma} \leq \lambda\}/\lambda^{d/2} = c_{0} \mathcal{H}^{d}(K_{\alpha,\beta,\gamma}). \end{array}$$

Prf. To follow Kigami–Lapidus' method [CMP '93], we use Kesten's renewal thm for Markov chains [Ann. Prob. '74].

 $\triangleright K_x \setminus V_0 = \bigcup_{k=1}^6 \bigcup_{l=1}^\infty K_{\phi_{k,l}(x)}$ $\triangleright \Gamma := \{ x_{=(\alpha,\beta,\gamma)} | \mathcal{H}^d(K_x) = 1 \}$ (the space of "Euc. shapes" of AGs)

 $\triangleright \{[X_n]\}_{n=0}^{\infty}: \text{Markov chain on } \Gamma, \\ x \rightsquigarrow [\phi_{k,l}(x)] \text{ w.prob. } \mathcal{H}^d(K_{\phi_{k,l}(x)}) \\ (\text{note } \sum_{k,l} \mathcal{H}^d(K_{\phi_{k,l}(x)}) = 1) \\ \triangleright V_n := -\frac{1}{d} \log \mathcal{H}^d(K_{X_n}) \\ \hline p. 30, \text{ Figure 3 of R. D. Mauldin \& M.}$

D. 30, Figure 3 of R. D. Mauldin & M. Urbański, Adv. Math. 136 (1998), 26–38

14/12Thm(K.). $\exists c_0 \in (0, \infty), \forall \alpha, \beta, \gamma \in (0, \infty),$ $\lim_{\lambda \to \infty} \#\{n \in \mathbb{N} \mid \lambda_n^{\alpha, \beta, \gamma} \leq \lambda\} / \lambda^{d/2} = c_0 \mathcal{H}^d(K_{\alpha, \beta, \gamma}).$ $\triangleright \{[X_n]\}_{n=0}^{\infty} : \mathsf{MC} \text{ on } \Gamma_{(\mathsf{shapes})}, x \rightsquigarrow [\phi_{k,l}(x)] \text{ w.prob. } \mathcal{H}^d(K_{\phi_{k,l}(x)})$ $\triangleright V_n := -\frac{1}{d} \log \mathcal{H}^d(K_{X_n}) \text{ (the changes in size along } \{[X_n]\}_{n=0}^{\infty})$ $\triangleright F(x, s) := e^{-ds} \mathcal{N}_n^{\mathsf{Dir}}(e^{2s})$

 $= \mathbb{E}_{x} \left[\sum_{n=0}^{\infty} \mathcal{R}([X_{n}], s - V_{n}) \right]$ $\stackrel{s \to \infty}{\underset{\text{Kesten 74}}{\overset{s \to \infty}{\underset{\text{$

 $\begin{array}{l} \mathsf{Thm}(\mathsf{K}.). \ \exists c_0 \in (0,\infty), \ \forall \alpha, \beta, \gamma \in (0,\infty), \\ \lim_{\lambda \to \infty} \#\{n \in \mathbb{N} \mid \lambda_n^{\alpha,\beta,\gamma} \leq \lambda\} / \lambda^{d/2} = c_0 \mathfrak{H}^d(K_{\alpha,\beta,\gamma}). \\ \triangleright \{[X_n]\}_{n=0}^{\infty}: \mathsf{MC} \text{ on } \Gamma_{(\mathrm{shapes})}, x \rightsquigarrow [\phi_{k,l}(x)] \text{ w.prob. } \mathfrak{H}^d(K_{\phi_{k,l}(x)}) \\ \triangleright V_n := -\frac{1}{d} \log \mathfrak{H}^d(K_{X_n}) \text{ (the changes in size along } \{[X_n]\}_{n=0}^{\infty}) \\ \triangleright F(x,s) := e^{-ds} \mathfrak{N}_x^{\mathrm{Dir.}}(e^{2s}) \end{array}$

 $= \mathbb{E}_{x} \left[\sum_{n=0}^{\infty} \mathcal{R}([X_{n}], s - V_{n}) \right]$ $\stackrel{s \to \infty}{\overset{s \to \infty}\overset{s \to \dots}{\overset{s \to \infty}\overset{s \to \infty}{\overset{s \to \infty}{\overset{s \to \infty}{\overset{s \to \infty}{\overset{s \to \infty}{\overset{s \to \dots}{\overset{s \to \dots}}\overset$
$\begin{array}{l} \mathsf{Thm}(\mathsf{K}.). \ \exists c_0 \in (0,\infty), \ \forall \alpha, \beta, \gamma \in (0,\infty), \\ \lim_{\lambda \to \infty} \#\{n \in \mathbb{N} \mid \lambda_n^{\alpha,\beta,\gamma} \leq \lambda\}/\lambda^{d/2} = c_0 \mathcal{H}^d(K_{\alpha,\beta,\gamma}). \\ \triangleright \{[X_n]\}_{n=0}^{\infty}: \mathsf{MC} \text{ on } \Gamma_{(\mathsf{shapes})}, x \rightsquigarrow [\phi_{k,l}(x)] \text{ w.prob. } \mathcal{H}^d(K_{\phi_{k,l}(x)}) \\ \triangleright V_n := -\frac{1}{d} \log \mathcal{H}^d(K_{X_n}) \text{ (the changes in size along } \{[X_n]\}_{n=0}^{\infty}) \\ \triangleright F(x,s) := e^{-ds} \mathcal{N}_x^{\mathrm{Dir.}}(e^{2s}) \\ = \mathcal{R}(x,s) + \sum_{k,l} F(\phi_{k,l}(x),s) \end{array}$

 $= \mathbb{E}_{x} \left[\sum_{n=0}^{\infty} \mathcal{R}([X_{n}], s - V_{n}) \right]$ $\stackrel{s \to \infty}{\underset{\text{Kesten '74}}{\overset{s \to \infty}{\underset{\Gamma \times \mathbb{R}}{}}} \mathcal{R}(x, s) d\nu(x) ds!$ Need: • $|\mathcal{R}(x, s)| \leq c' e^{-c|s|^{\alpha}}$.
• $\{(X_{n}, V_{n})\}_{n=0}^{\infty}$ unique. ergodic p. 30, Figure 3 of R. D. Mauldin & M.

Urbański, Adv. Math. 136 (1998), 26–38

14/12 Thm(K.). $\exists c_0 \in (0,\infty), \forall \alpha, \beta, \gamma \in (0,\infty),$ $\lim_{\lambda o\infty} \#\{n\in\mathbb{N}\mid\lambda_n^{lpha,eta,\gamma}\leq\lambda\}/\lambda^{d/2}=c_0\mathcal{H}^d(K_{lpha,eta,\gamma}).$ $arphi \{ [X_n] \}_{n=0}^{\infty}$: MC on $\Gamma_{(ext{shapes})}$, $x \!
ightarrow [\phi_{k,l}(x)]$ w.prob. $\mathcal{H}^d(K_{\phi_{k,l}(x)})$ $\triangleright V_n := -\frac{1}{d} \log \mathcal{H}^d(K_{X_n})$ (the changes in size along $\{[X_n]\}_{n=0}^{\infty}$) $\triangleright F(x,s) := e^{-ds} \mathcal{N}_x^{\mathrm{Dir.}}(e^{2s})$ $= \Re(x,s) + \sum_{k,l} \mathcal{H}^d(K_{\phi_{k,l}(x)})$ $F([\phi_{k,l}(x)], s + \frac{1}{d} \log \mathcal{H}^d(K_{\phi_{k,l}(x)}))$ p. 30, Figure 3 of R. D. Mauldin & M. Urbański, Adv. Math. 136 (1998), 26–38

14/12 Thm(K.). $\exists c_0 \in (0,\infty), \forall \alpha, \beta, \gamma \in (0,\infty),$ $\lim_{\lambda o\infty} \#\{n\in\mathbb{N}\mid\lambda_n^{lpha,eta,\gamma}\leq\lambda\}/\lambda^{d/2}=c_0\mathcal{H}^d(K_{lpha,eta,\gamma}).$ $arphi \{ [X_n] \}_{n=0}^{\infty}$: MC on $\Gamma_{(ext{shapes})}$, $x \!
ightarrow [\phi_{k,l}(x)]$ w.prob. $\mathcal{H}^d(K_{\phi_{k,l}(x)})$ $\triangleright V_n := -\frac{1}{d} \log \mathcal{H}^d(K_{X_n})$ (the changes in size along $\{[X_n]\}_{n=0}^{\infty}$) $\triangleright F(x,s) := e^{-ds} \mathcal{N}_x^{\mathrm{Dir.}}(e^{2s})$ $= \Re(x,s) + \sum_{k,l} \mathcal{H}^d(K_{\phi_{k,l}(x)})$ $F([\phi_{k,l}(x)], s + \frac{1}{d} \log \mathcal{H}^d(K_{\phi_{k,l}(x)}))$ $= \mathbb{E}_{\boldsymbol{x}}\left[\sum_{n=0}^{\infty} \mathcal{R}([X_n], s - V_n)\right]$ p. 30, Figure 3 of R. D. Mauldin & M. Urbański, Adv. Math. 136 (1998), 26–38

14/12 Thm(K.). $\exists c_0 \in (0,\infty), \forall \alpha, \beta, \gamma \in (0,\infty),$ $\lim_{\lambda o\infty} \#\{n\in\mathbb{N}\mid\lambda_n^{lpha,eta,\gamma}\!\leq\!\lambda\}/\lambda^{d/2}\!=c_0\mathfrak{H}^d(K_{lpha,eta,\gamma}).$ $arphi \{ [X_n] \}_{n=0}^{\infty}$: MC on $\Gamma_{(ext{shapes})}$, $x \sim [\phi_{k,l}(x)]$ w.prob. $\mathcal{H}^d(K_{\phi_{k,l}(x)})$ $\triangleright V_n := -\frac{1}{d} \log \mathcal{H}^d(K_{X_n})$ (the changes in size along $\{[X_n]\}_{n=0}^{\infty}$) $\triangleright F(x,s) := e^{-ds} \mathcal{N}^{\mathrm{Dir.}}_x(e^{2s})$ $= \Re(x,s) + \sum_{k,l} \mathcal{H}^d(K_{\phi_{k,l}(x)})$ $F([\phi_{k,l}(x)], s + \frac{1}{d} \log \mathcal{H}^d(K_{\phi_{k,l}(x)}))$ $= \mathbb{E}_{\boldsymbol{x}}\left[\sum_{n=0}^{\infty} \mathcal{R}([X_n], s - V_n)\right]$ $\xrightarrow{s \to \infty}_{\text{Kesten '74}} \int_{\Gamma \times \mathbb{R}} \Re(x,s) d\nu(x) ds!$ p. 30, Figure 3 of R. D. Mauldin & M. Urbański, Adv. Math. 136 (1998), 26–38

14/12 Thm(K.). $\exists c_0 \in (0,\infty), \forall \alpha, \beta, \gamma \in (0,\infty),$ $\lim_{\lambda o\infty} \#\{n\in\mathbb{N}\mid\lambda_n^{lpha,eta,\gamma}\!\leq\!\lambda\}/\lambda^{d/2}\!=c_0\mathfrak{H}^d(K_{lpha,eta,\gamma}).$ $arphi \{ [X_n] \}_{n=0}^{\infty}$: MC on $\Gamma_{(ext{shapes})}$, $x \sim [\phi_{k,l}(x)]$ w.prob. $\mathcal{H}^d(K_{\phi_{k,l}(x)})$ $\triangleright V_n := -\frac{1}{d} \log \mathcal{H}^d(K_{X_n})$ (the changes in size along $\{[X_n]\}_{n=0}^{\infty}$) $\triangleright F(x,s) := e^{-ds} \mathcal{N}_x^{\mathrm{Dir.}}(e^{2s})$ $= \Re(x,s) + \sum_{k,l} \mathcal{H}^d(K_{\phi_{k,l}(x)})$ $F([\phi_{k,l}(x)], s + \frac{1}{d} \log \mathcal{H}^d(K_{\phi_{k,l}(x)}))$ $= \mathbb{E}_{\boldsymbol{x}}\left[\sum_{n=0}^{\infty} \mathcal{R}([X_n], s - V_n)\right]$ $\xrightarrow{s \to \infty}_{\text{Kesten '74}} \int_{\Gamma \times \mathbb{R}} \Re(x,s) d\nu(x) ds!$ Need: • $|\Re(x,s)| < c'e^{-c|s|^{\alpha}}$. p. 30, Figure 3 of R. D. Mauldin & M.

Urbański, Adv. Math. 136 (1998), 26–38

14/12 Thm(K.). $\exists c_0 \in (0,\infty), \forall \alpha, \beta, \gamma \in (0,\infty),$ $\lim_{\lambda o\infty} \#\{n\in\mathbb{N}\mid\lambda_n^{lpha,eta,\gamma}\!\leq\!\lambda\}/\lambda^{d/2}\!=c_0\mathfrak{H}^d(K_{lpha,eta,\gamma}).$ $arphi \{ [X_n] \}_{n=0}^{\infty}$: MC on $\Gamma_{(ext{shapes})}$, $x \sim [\phi_{k,l}(x)]$ w.prob. $\mathcal{H}^d(K_{\phi_{k,l}(x)})$ $\triangleright V_n := -\frac{1}{d} \log \mathcal{H}^d(K_{X_n})$ (the changes in size along $\{[X_n]\}_{n=0}^{\infty}$) $\triangleright F(x,s) := e^{-ds} \mathcal{N}_x^{\mathrm{Dir.}}(e^{2s})$ $= \Re(x,s) + \sum_{k,l} \mathcal{H}^d(K_{\phi_{k,l}(x)})$ $F([\phi_{k,l}(x)], s + \frac{1}{d} \log \mathcal{H}^d(K_{\phi_{k,l}(x)}))$ $= \mathbb{E}_{\boldsymbol{x}}\left[\sum_{n=0}^{\infty} \mathcal{R}([X_n], s - V_n)\right]$ $\xrightarrow{s \to \infty}_{\text{Kesten '74}} \int_{\Gamma \times \mathbb{R}} \Re(x,s) d\nu(x) ds!$ Need: • $|\Re(x,s)| < c'e^{-c|s|^{\alpha}}$. $\{(X_n, V_n)\}_{n=0}^{\infty}$ unique. ergodic p. 30, Figure 3 of R. D. Mauldin & M. Urbański, Adv. Math. 136 (1998), 26–38

15/12 A key for Reminder estimate: **Embedding** in H^1 ! $\triangleright \nu^{g} := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \operatorname{dvol}_{C} (\operatorname{NOT doubling!})$ $\triangleright^{\forall} u \in \operatorname{LIP}|_{K_{g}}, \, \mathcal{E}^{g}(u, u) := \sum_{C \subset \operatorname{arc} K_{g}} \operatorname{rad}(C) \int_{C} |\nabla_{C} u|^{2} \operatorname{dvol}_{C} (cf. \operatorname{Osada'07})$

15/12 A key for Reminder estimate: **Embedding in** H^1 ! **Prop(K.).** Let $f \in \text{LIP}(\text{Arc}(0, r, [0, \alpha]))$. Define $\mathcal{I}_{\mathrm{D}}f, \mathcal{I}_{\mathrm{N}}f: D(0,r,[0,lpha])
ightarrow \mathbb{R}$ by $\mathcal{I}_{\mathrm{D}}f(se^{i heta})\!:=\!\Big(1-rac{s}{r}\Big)f(r)+rac{s}{r}f(re^{i heta}),$ ${\mathcal I}_{
m N}f(se^{i heta})\!:=\!\left(1-rac{s}{r}
ight)\!\int_{0}^{lpha}\!\!f(re^{i heta})\,rac{d heta}{lpha}+rac{s}{r}f(re^{i heta}).$ $\triangleright \nu^g := \sum_{C \subset \operatorname{arc} K_q} \operatorname{rad}(C) \operatorname{dvol}_C$ (NOT doubling!) $\triangleright^{\forall} u \in \mathrm{LIP}|_{K_g}, \, \mathcal{E}^g(u, u) := \sum_{C \subset \mathrm{arc} K_g} \mathrm{rad}(C) \int_C |\nabla_C u|^2 \, d\mathrm{vol}_C \, (cf. \, \mathrm{Osada} \, '\mathrm{O7})$

15/12 A key for Reminder estimate: **Embedding in** H^1 ! **Prop(K.).** Let $f \in \text{LIP}(\text{Arc}(0, r, [0, \alpha]))$. Define $\mathcal{I}_{\mathrm{D}} f, \mathcal{I}_{\mathrm{N}} f: D(0,r,[0,lpha])
ightarrow \mathbb{R}$ by $\mathcal{I}_{\mathrm{D}}f(se^{i heta})\!:=\!\Big(1-rac{s}{r}\Big)f(r)+rac{s}{r}f(re^{i heta}),$ $\mathcal{I}_{\mathrm{N}}f(se^{i heta})\!:=\!\left(1-rac{s}{r}
ight)\!\int_{0}^{lpha}\!\!f(re^{i heta})\,rac{d heta}{lpha}+rac{s}{r}f(re^{i heta}).$ Then $\operatorname{Lip}(\mathcal{I}_{\mathrm{B}}f) \leq 100 \operatorname{Lip}(f)$ and $\|\mathcal{I}_{\mathrm{B}}f\|_{L^{2}}^{2} \! \asymp \! r \|f\|_{L^{2}}^{2}$, $\|
abla \mathcal{I}_{\mathrm{B}}f\|_{L^{2}}^{2} \! \asymp \! r \|f'\|_{L^{2}}^{2}$. $\triangleright \nu^g := \sum_{C \subset \operatorname{arc} K_g} \operatorname{rad}(C) \operatorname{dvol}_C$ (NOT doubling!) $\triangleright^{\forall} u \in \mathrm{LIP}|_{K_g}, \, \mathcal{E}^g(u, u) := \sum_{C \subset \mathrm{arc} K_g} \mathrm{rad}(C) \int_C |\nabla_C u|^2 \, d\mathrm{vol}_C \, (cf. \, \mathrm{Osada' 07})$