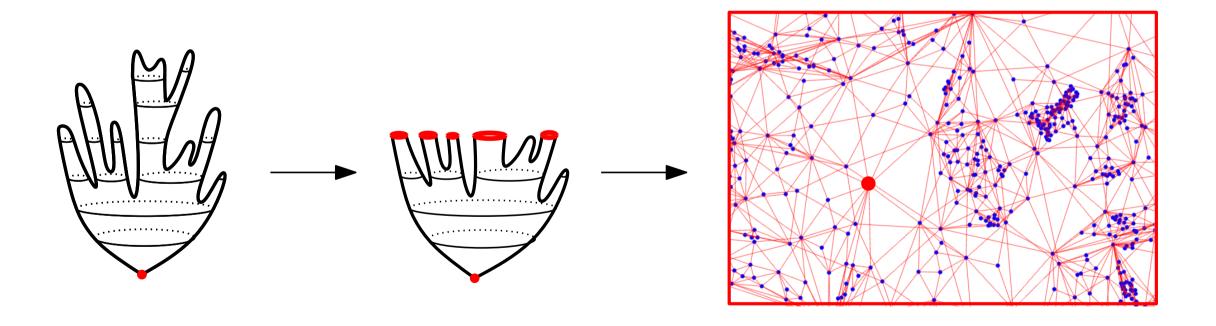
Random triangulations coupled with an Ising model

Laurent Ménard (Paris Nanterre)

joint work with Marie Albenque and Gilles Schaeffer (CNRS and LIX)

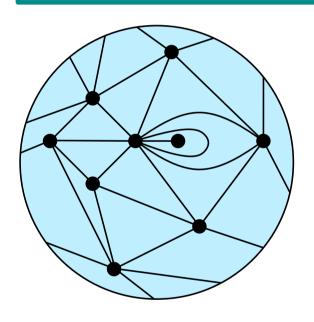


Outline

- 1. Introduction: 2DQG and planar maps
- 2. Local weak topology
- 3. Uniform triangulations and the UIPT
- 4. Adding matter: Ising model
- 5. Combinatorics of triangulations with spins
- 6. Local limit of triangulations with spins

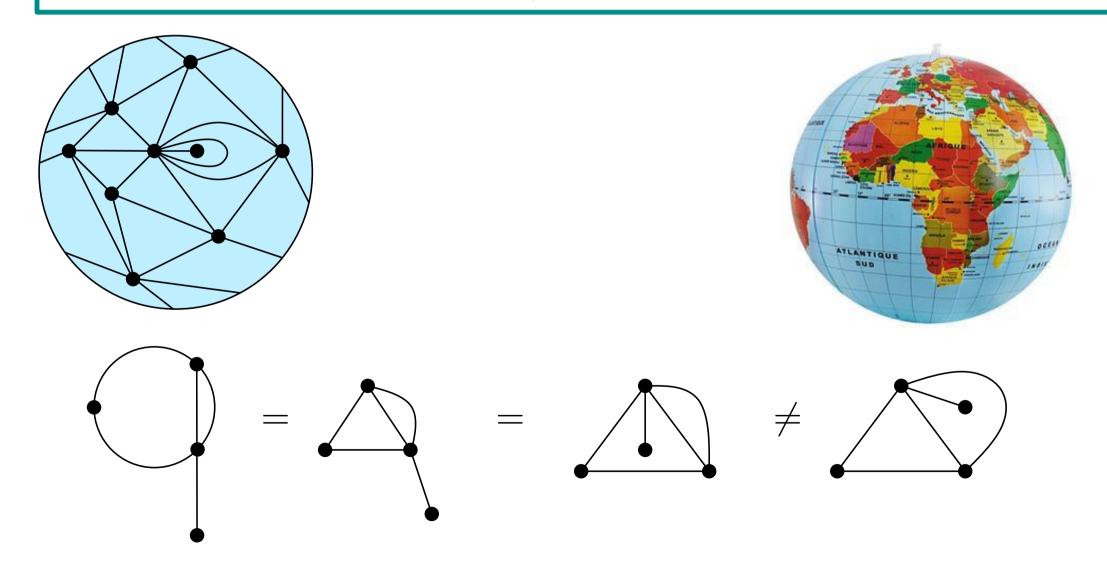
Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



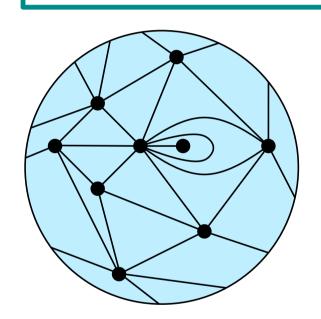
Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



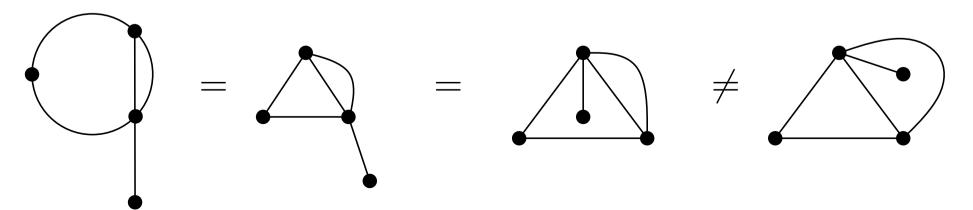
Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



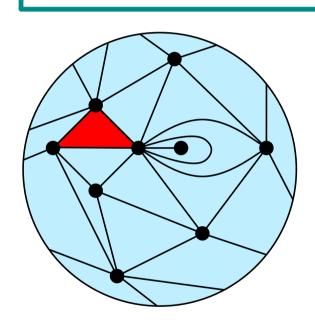
faces: connected components of the complement of edges

p-angulation: each face is bounded by p edges



Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

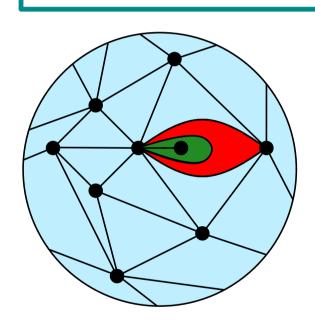


faces: connected components of the complement of edges

p-angulation: each face is bounded by p edges

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

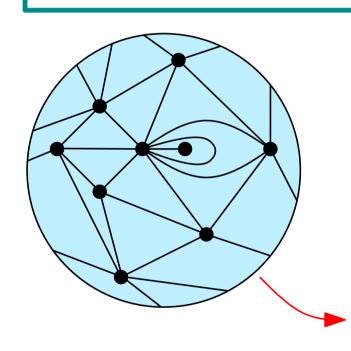


faces: connected components of the complement of edges

p-angulation: each face is bounded by p edges

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



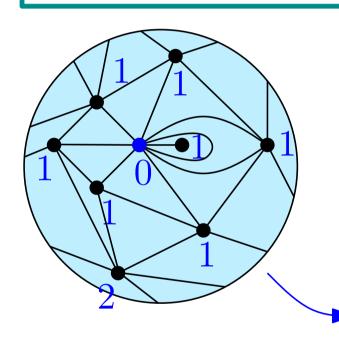
faces: connected components of the complement of edges

p-angulation: each face is bounded by p edges

This is a triangulation

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



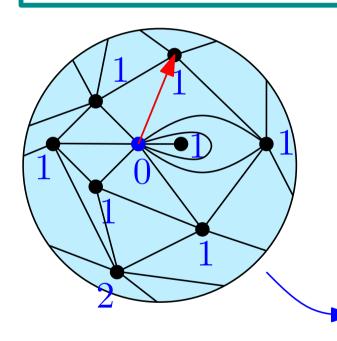
In blue, distances from •

M Planar Map:

- V(M) := set of vertices of M
- $d_{gr} := \text{graph distance on } V(M)$
- $(V(M), d_{gr})$ is a (finite) metric space

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



In blue, distances from •

M Planar Map:

- V(M) := set of vertices of M
- $d_{gr} := \text{graph distance on } V(M)$
- $(V(M), d_{gr})$ is a (finite) metric space

Rooted map: mark an oriented edge of the map -

Euler relation in a triangulation: number of edges / vertices / faces linked Take a triangulation of size n uniformly at random. What does it look like if n is large ?

Two points of view: global/local, continuous/discrete

Euler relation in a triangulation: number of edges / vertices / faces linked Take a triangulation of size n uniformly at random. What does it look like if n is large ?

Two points of view: global/local, continuous/discrete

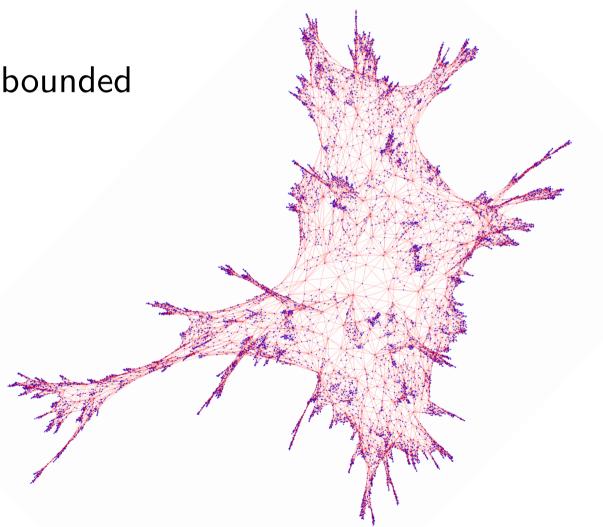
Global:

Rescale distances to keep diameter bounded

[Le Gall 13, Miermont 13]:

converges to the Brownian map.

- Gromov-Hausdorff topology
- Continuous metric space
- Homeomorphic to the sphere
- Hausdorff dimension 4
- Universality

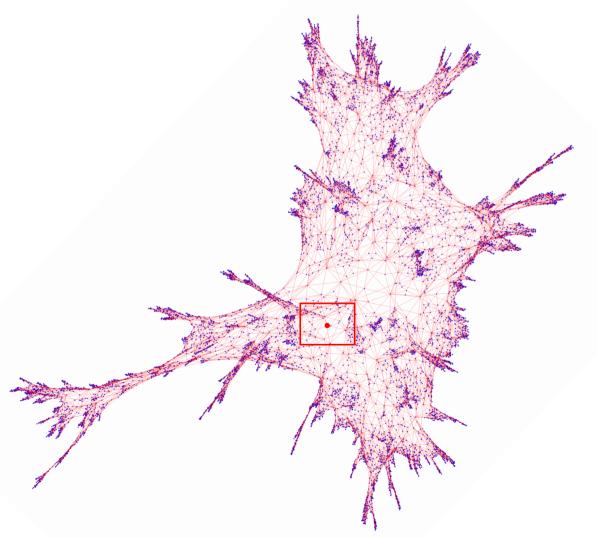


Euler relation in a triangulation: number of edges / vertices / faces linked Take a triangulation of size n uniformly at random. What does it look like if n is large ?

Two points of view: global/local, continuous/discrete

Local:

Don't rescale distances and look at neighborhoods of the root



Euler relation in a triangulation: number of edges / vertices / faces linked Take a triangulation of size n uniformly at random. What does it look like if n is large ?

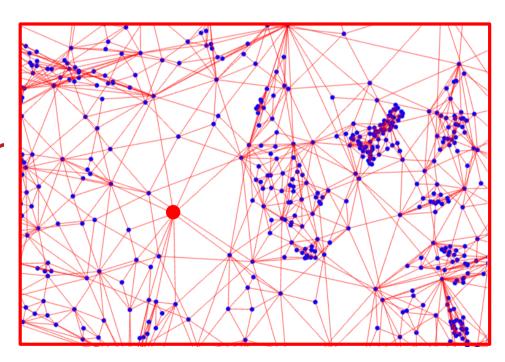
Two points of view: global/local, continuous/discrete

Local:

Don't rescale distances and look at neighborhoods of the root

[Angel – Schramm 03, Krikun 05]: Converges to the **Uniform Infinite Planar Triangulation**

- Local topology
- Metric balls of radius R grow like R^4
- "Universality" of the exponent 4.



Local Topology

Local Topology for planar maps

 $\mathcal{M}_f := \{ \text{finite rooted planar maps} \}.$

Definition:

The **local topology** on \mathcal{M}_f is induced by the distance:

$$d_{loc}(m, m') := (1 + \max\{r \ge 0 : B_r(m) = B_r(m')\})^{-1}$$

where $B_r(m)$ is the graph made of all the vertices and edges of m which are within distance r from the root.

Local Topology for planar maps

 $\mathcal{M}_f := \{ \text{finite rooted planar maps} \}.$

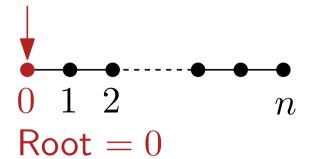
Definition:

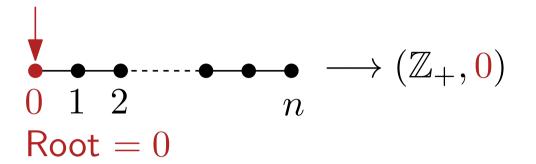
The **local topology** on \mathcal{M}_f is induced by the distance:

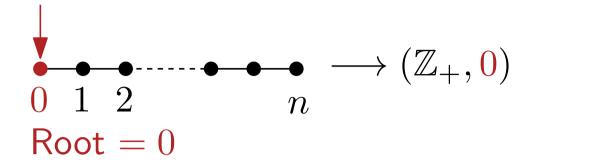
$$d_{loc}(m, m') := (1 + \max\{r \ge 0 : B_r(m) = B_r(m')\})^{-1}$$

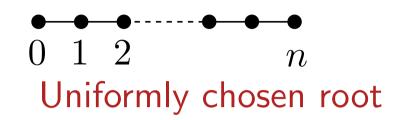
where $B_r(m)$ is the graph made of all the vertices and edges of m which are within distance r from the root.

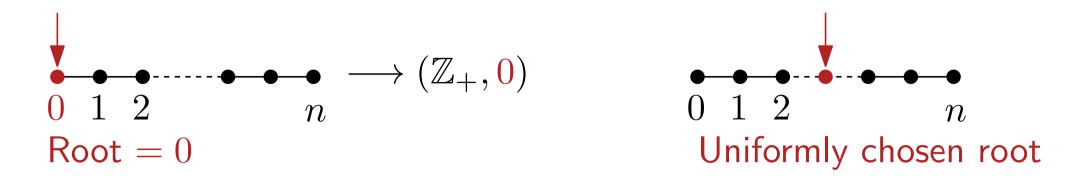
- (\mathcal{M}, d_{loc}) : closure of (\mathcal{M}_f, d_{loc}) . It is a **Polish** space (complete and separable).
- $\mathcal{M}_{\infty} := \mathcal{M} \setminus \mathcal{M}_f$ set of infinite planar maps.

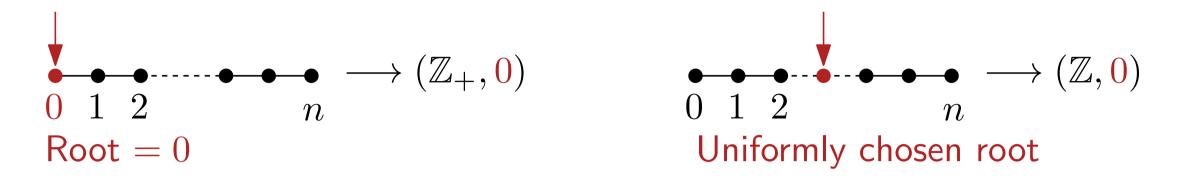


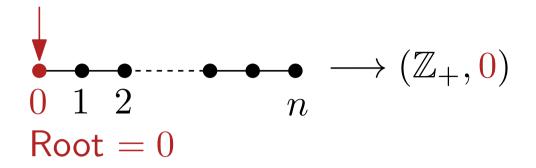


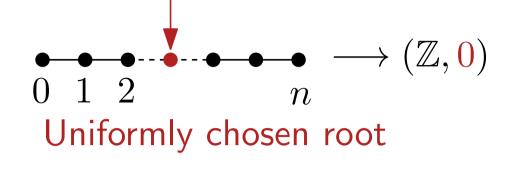


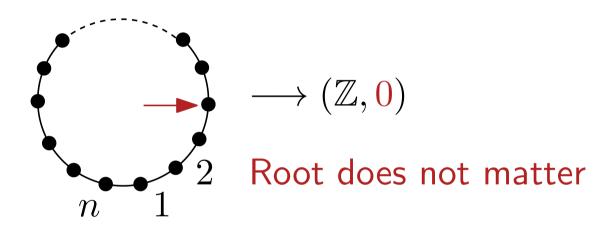


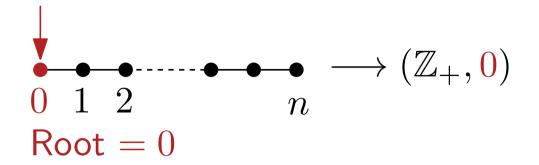


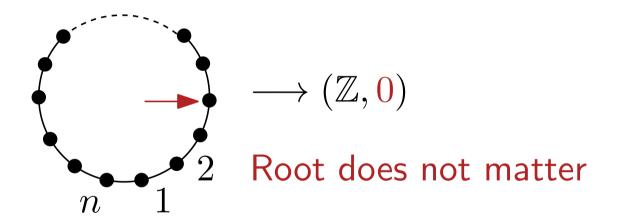


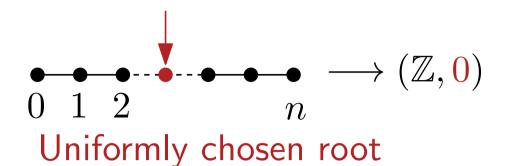


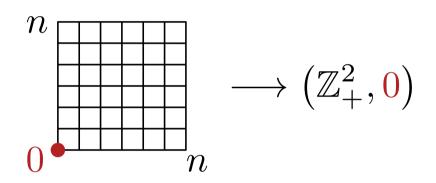


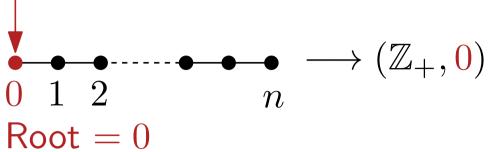


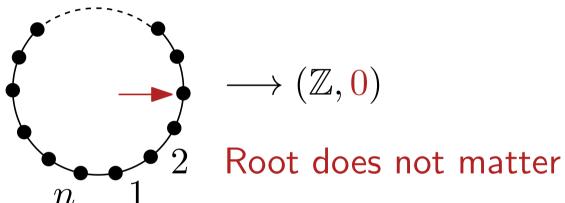


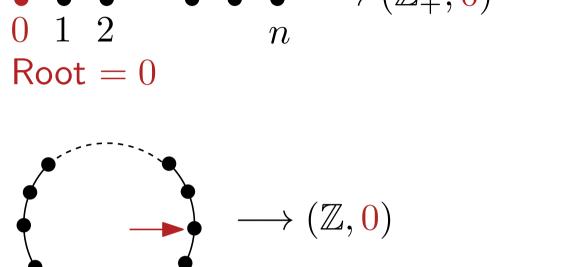


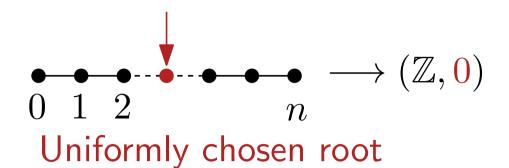


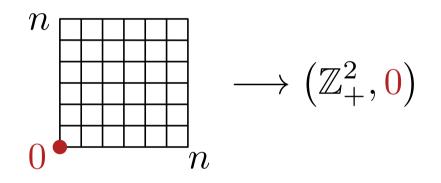


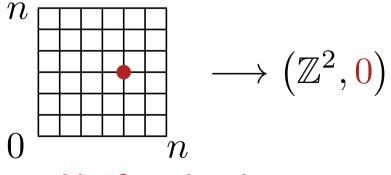




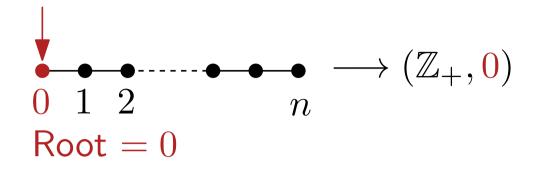


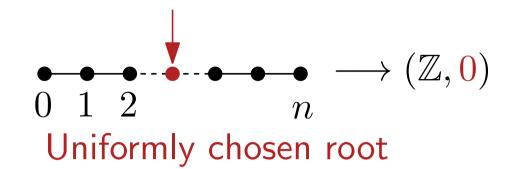


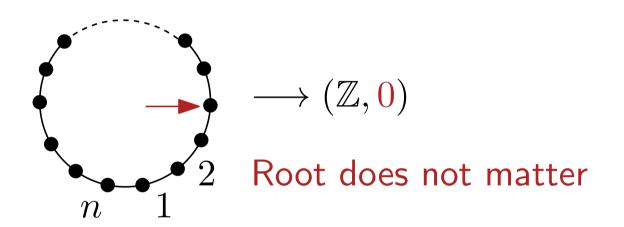


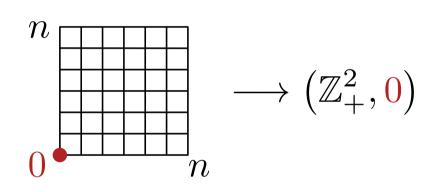


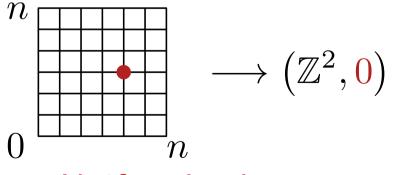
Uniformly chosen root











Triangulation with n faces chosen uniformly at random \longrightarrow ?

Uniformly chosen root

Local topology for triangulations

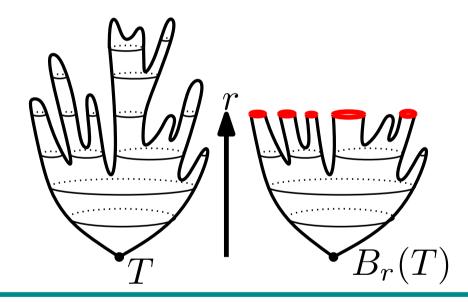
 $\mathcal{T}_f := \{ \text{finite rooted planar triangulations} \}.$

Definition:

The **local topology** on \mathcal{T}_f is induced by the distance:

$$d_{loc}(T, T') := (1 + \max\{r \ge 0 : B_r(T) = B_r(T')\})^{-1}$$

where $B_r(T)$ is the submap (with spins) of T composed by the **faces** of T with a vertex at distance < r from the root.



Local topology for triangulations

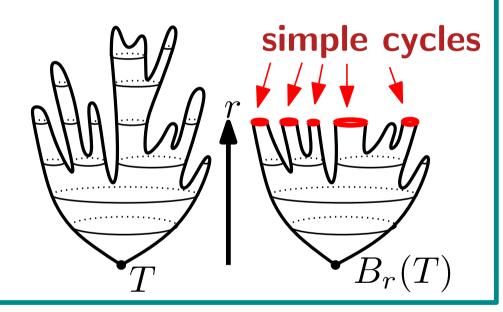
 $\mathcal{T}_f := \{ \text{finite rooted planar triangulations} \}.$

Definition:

The **local topology** on \mathcal{T}_f is induced by the distance:

$$d_{loc}(T, T') := (1 + \max\{r \ge 0 : B_r(T) = B_r(T')\})^{-1}$$

where $B_r(T)$ is the submap (with spins) of T composed by the **faces** of T with a vertex at distance < r from the root.



Local topology for triangulations

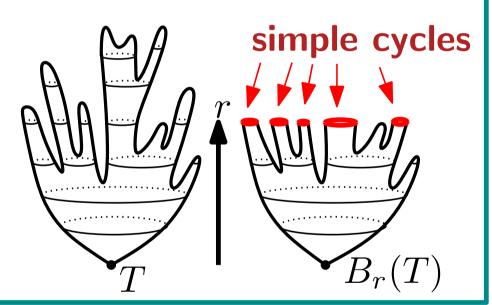
 $\mathcal{T}_f := \{ \text{finite rooted planar triangulations} \}.$

Definition:

The **local topology** on \mathcal{T}_f is induced by the distance:

$$d_{loc}(T, T') := (1 + \max\{r \ge 0 : B_r(T) = B_r(T')\})^{-1}$$

where $B_r(T)$ is the submap (with spins) of T composed by the **faces** of T with a vertex at distance < r from the root.



- (\mathcal{T}, d_{loc}) : closure of (\mathcal{T}_f, d_{loc}) . It is a Polish space.
- $\mathcal{T}_{\infty} := \mathcal{T} \setminus \mathcal{T}_f$ set of **infinite** planar triangulations.

Weak convergence for the local topology

Portemanteau theorem + Levy - Prokhorov metric:

A sequence of measures measures (P_n) on \mathcal{T}_f converge weakly to a measure P on \mathcal{T}_{∞} if:

1. For every r>0 and every possible r-ball Δ

$$P_n\bigg(\left\{(T,v)\in\mathcal{T}_f:B_r(T,v)=\Delta\right\}\bigg)\underset{n\to\infty}{\longrightarrow}P\bigg(\left\{T\in\mathcal{T}_\infty:B_r(T)=\Delta\right\}\bigg).$$

Weak convergence for the local topology

Portemanteau theorem + Levy - Prokhorov metric:

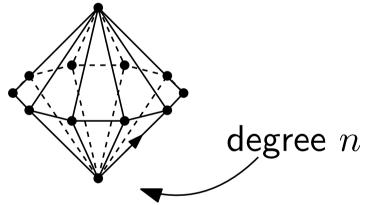
A sequence of measures measures (P_n) on \mathcal{T}_f converge weakly to a measure P on \mathcal{T}_{∞} if:

1. For every r>0 and every possible r-ball Δ

$$P_n\bigg(\left\{(T,v)\in\mathcal{T}_f:B_r(T,v)=\Delta\right\}\bigg)\underset{n\to\infty}{\longrightarrow}P\bigg(\left\{T\in\mathcal{T}_\infty:B_r(T)=\Delta\right\}\bigg).$$

Problem: not sufficient since the space (\mathcal{T}, d_{loc}) is **not compact!**

Ex:



Weak convergence for the local topology

Portemanteau theorem + Levy - Prokhorov metric:

A sequence of measures measures (P_n) on \mathcal{T}_f converge weakly to a measure P on \mathcal{T}_{∞} if:

1. For every r>0 and every possible r-ball Δ

$$P_n\left(\left\{(T,v)\in\mathcal{T}_f:B_r(T,v)=\Delta\right\}\right)\underset{n\to\infty}{\longrightarrow}P\left(\left\{T\in\mathcal{T}_\infty:B_r(T)=\Delta\right\}\right).$$

- 2. No loss of mass at the limit: Tightness of (P_n) , or the measure P defined by the limits in 1. is a probability measure.
 - Vertex degrees are tight (at finite distance from the root)

•
$$\forall r > 0$$
, $\sum_{r-\mathsf{balls}\,\Delta} P\bigg(\left\{T \in \mathcal{T}_{\infty} : B_r(T) = \Delta\right\}\bigg) = 1.$

Uniform triangulations and the UIPT

Uniform triangulations probabilities

Denote \mathbb{P}_n the uniform measure on triangulations with n vertices.

We want to compute, for every r and every fixed possible r-ball:

$$\mathbb{P}_n\bigg(B_r(\mathbf{T}) = \bigcup_{r=1}^{n} \mathbb{P}_n\bigg)$$

Uniform triangulations probabilities

Denote \mathbb{P}_n the uniform measure on triangulations with n vertices.

We want to compute, for every r and every fixed possible r-ball:

$$\mathbb{P}_n\left(B_r(\mathbf{T}) = \begin{array}{c} p_1 & p_k \\ & & \end{array}\right)$$

A fixed r-ball Δ has: \bullet $|\Delta|$ vertices.

- boundary lengths (p_1, \ldots, p_k)

Uniform triangulations probabilities

Denote \mathbb{P}_n the uniform measure on triangulations with n vertices.

We want to compute, for every r and every fixed possible r-ball:

$$\mathbb{P}_n\left(B_r(\mathbf{T}) = \begin{array}{c} p_1 & p_k \\ & & \end{array}\right)$$

A fixed r-ball Δ has: \bullet $|\Delta|$ vertices.

• boundary lengths (p_1, \ldots, p_k)

 $t_{n,p} := \begin{array}{l} \text{number of triangulations with boundary} \\ \text{lentgh } p \text{ and } n \text{ inner vertices} \end{array}$

Uniform triangulations probabilities

Denote \mathbb{P}_n the uniform measure on triangulations with n vertices.

We want to compute, for every r and every fixed possible r-ball:

$$\mathbb{P}_n\left(B_r(\mathbf{T}) = \begin{array}{c} \sum_{i=1}^{p_1} \sum_{i=1}^{p_k} t_{n_i,p_i} \\ t_n \end{array}\right)$$

A fixed r-ball Δ has: \bullet $|\Delta|$ vertices.

- boundary lengths (p_1, \ldots, p_k)

$$t_{n,p} := \begin{array}{l} \mbox{number of triangulations with boundary} \\ \mbox{lentgh } p \mbox{ and } n \mbox{ inner vertices} \end{array}$$

Uniform triangulations probabilities

Denote \mathbb{P}_n the uniform measure on triangulations with n vertices.

We want to compute, for every r and every fixed possible r-ball:

$$\mathbb{P}_n \left(B_r(\mathbf{T}) = \underbrace{\sum_{i=1}^{p_1} \sum_{i=1}^{p_k} t_{n_i, p_i}}_{t_n} \right)$$

A fixed r-ball Δ has: \bullet $|\Delta|$ vertices.

• boundary lengths (p_1, \ldots, p_k)

$$t_{n,p} := \begin{array}{l} \mbox{number of triangulations with boundary} \\ \mbox{lentgh } p \mbox{ and } n \mbox{ inner vertices} \end{array}$$

Counting Maps: combinatorial toolbox

Theorem: [Tutte 60s]

The number of rooted triangulations with simple boundary of length $\,p\,$ and with $\,n\,$ inner vertices is

$$t_{n,p} := 4^{n-1} \frac{p(2p)!}{(p!)^2} \frac{(2p+3n-5)!!}{n!(2p+n-1)!!} \sim_{n\to\infty} C(p) (12\sqrt{3})^n n^{-5/2}.$$

Counting Maps: combinatorial toolbox

Theorem: [Tutte 60s]

The number of rooted triangulations with simple boundary of length $\,p\,$ and with $\,n\,$ inner vertices is

$$t_{n,p} := 4^{n-1} \frac{p(2p)!}{(p!)^2} \frac{(2p+3n-5)!!}{n! (2p+n-1)!!} \sim_{n\to\infty} C(p) (12\sqrt{3})^n n^{-5/2}.$$

Important Remark:

The asymptotic behavior $t_{n,p} \sim C(p) \rho^n n^{-5/2}$ is universal.

Counting Maps: combinatorial toolbox

Theorem: [Tutte 60s]

The number of rooted triangulations with simple boundary of length $\,p\,$ and with $\,n\,$ inner vertices is

$$t_{n,p} := 4^{n-1} \frac{p(2p)!}{(p!)^2} \frac{(2p+3n-5)!!}{n! (2p+n-1)!!} \sim_{n\to\infty} C(p) (12\sqrt{3})^n n^{-5/2}.$$

Main methods for counting maps:

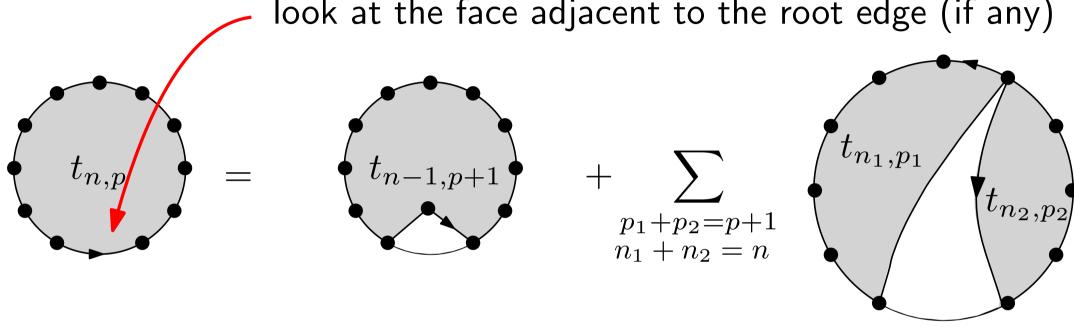
- Generating functionology [Tutte 60s]:
 Encoding a recurrence relation via generating functions.
- Matrix integrals [Brézin-Itzykson-Parisi-Zuber 78]: Interpreting maps as the Feynman diagrams.
- Computation of characters [Goulden-Jackson]:
 Interpreting maps as products of permutations.
- Bijections with decorated trees [Cori-Vauquelin 81, Schaeffer 98].

Tutte / loop / Schwinger-Dyson / ... equations:

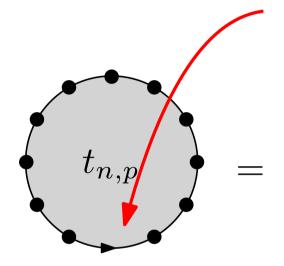
Tutte / loop / Schwinger-Dyson / ... equations:

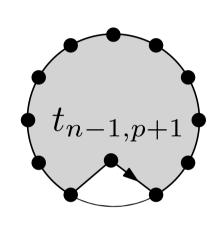
look at the face adjacent to the root edge (if any) $t_{n,p} = t_{n-1,p+1}$

Tutte / loop / Schwinger-Dyson / ... equations:

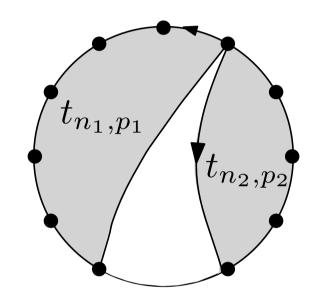


Tutte / loop / Schwinger-Dyson / ... equations:





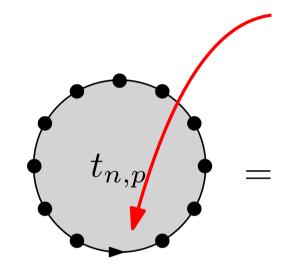
$$+ \sum_{\substack{p_1 + p_2 = p + 1 \\ n_1 + n_2 = n}}$$

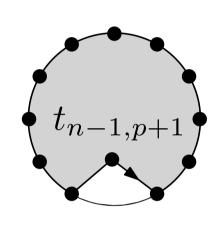


$$T(x,y) := \sum_{n\geq 0, p\geq 1} t_{n,p} x^n y^{p-1} = \sum_{p\geq 1} T_p(x) y^{p-1}$$

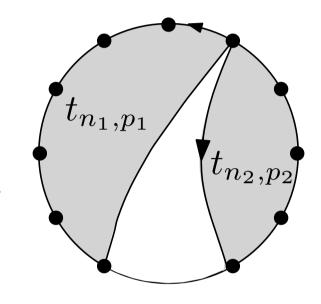
$$= y + \sum_{n>1, p>1} t_{n-1, p+1} x^n y^{p-1} + \sum_{n_1, n_2>0, p_1, p_2>1} t_{n_1, p_1} t_{n_2, p_2} x^{n_1+n_2} y^{p_1+p_2-2}$$

Tutte / loop / Schwinger-Dyson / ... equations:





$$+ \sum_{\substack{p_1 + p_2 = p + 1 \\ n_1 + n_2 = n}}$$



$$T(x,y) := \sum_{n \ge 0, p \ge 1} t_{n,p} x^n y^{p-1} = \sum_{p \ge 1} T_p(x) y^{p-1}$$

$$= y + \sum_{n>1, p>1} t_{n-1, p+1} x^n y^{p-1} + \sum_{n_1, n_2>0, p_1, p_2>1} t_{n_1, p_1} t_{n_2, p_2} x^{n_1+n_2} y^{p_1+p_2-2}$$

$$T(x,y) = y + \frac{x}{y} \left(T(x,y) - T(x,0) \right) + T(x,y)^2$$
 y is a catalytic variable

Large triangulations: one endedness

$$\mathbb{P}_n\left(B_r(\mathbf{T}) = \underbrace{\sum_{i=1}^{p_1} \sum_{i=1}^{p_k} \sum_{i=1}^{n_1 + \dots + n_k = n - |\Delta|} \sum_{i=1}^{n_1 + \dots + n_k = n - |\Delta|} \sum_{i=1}^{n_1 + \dots + n_k = n - |\Delta|} t_{n,1}\right)$$

For fixed p, as $n \to \infty$, $t_{n,p} \sim C(p) \rho^{-n} \, n^{-\alpha}$ with $\alpha = \frac{5}{2}$

Large triangulations: one endedness

$$\mathbb{P}_n\left(B_r(\mathbf{T}) = \underbrace{\sum_{i=1}^{p_1} \sum_{i=1}^{p_k} \prod_{i=1}^{k} t_{n_i,p_i}}_{t_{n,1}}\right)$$

For fixed p, as $n\to\infty$, $t_{n,p}\sim C(p)\rho^{-n}\,n^{-\alpha}$ with $\alpha=\frac{5}{2}$

Since
$$\alpha > 2$$
:
$$\sum_{\substack{n_1 + \dots + n_k = N \\ 2 \text{ of the } n_i \text{'s} > A}} \prod_{i=1}^{\kappa} t_{n_i, p_i} \leq Cst \times \rho^{-N} N^{-\alpha} A^{1-\alpha}$$

meaning only one of the holes of $B_r(\mathbf{T})$ will be filled by an infinite triangulation.

Large triangulations: one endedness

$$\mathbb{P}_n\left(B_r(\mathbf{T}) = \underbrace{\sum_{i=1}^{p_1} \sum_{i=1}^{p_k} \prod_{i=1}^{k} t_{n_i,p_i}}_{t_{n,1}}\right)$$

For fixed p, as $n\to\infty$, $t_{n,p}\sim C(p)\rho^{-n}\,n^{-\alpha}$ with $\alpha=\frac{5}{2}$

Since
$$\alpha > 2$$
:
$$\sum_{\substack{n_1 + \dots + n_k = N \\ 2 \text{ of the } n_i \text{'s } > A}} \prod_{i=1}^{\kappa} t_{n_i,p_i} \leq Cst \times \rho^{-N} N^{-\alpha} A^{1-\alpha}$$

meaning only one of the holes of $B_r(\mathbf{T})$ will be filled by an infinite triangulation.

one endedness property: if there is a limiting law for \mathbb{P}_n , it is supported on infinite triangulations with one end.

The Uniform Infinite Planar Triangulation

$$\mathbb{P}_n\left(B_r(\mathbf{T}) = \underbrace{\sum_{i=1}^{p_1} \sum_{i=1}^{p_k} \prod_{i=1}^{k} t_{n_i, p_i}}_{t_{n,1}}\right) = \frac{\sum_{i=1}^{n_1 + \dots + n_k = n - |\Delta|} \prod_{i=1}^{k} t_{n_i, p_i}}{\sum_{i=1}^{k} t_{n_i, p_i}}$$

$$= \frac{\left[x^{n-|\Delta|}\right] \left(\prod_{i=1}^{k} T_{p_i}(x)\right)}{\left[x^n\right] T_1(x)}$$

$$\rightarrow \left(\prod_{i=1}^k T_{p_i}(\rho)\right) \cdot \sum_{j=i}^k \frac{C_j \,\rho^{|\Delta|}}{C_1 \, T_{p_j}(\rho)}$$

The Uniform Infinite Planar Triangulation

$$\mathbb{P}_{n}\left(B_{r}(\mathbf{T}) = \sum_{i=1}^{p_{1}} \sum_{i=1}^{p_{k}} \frac{1}{t_{n_{i},p_{i}}} = \frac{\sum_{n_{1}+\dots+n_{k}=n-|\Delta|} \prod_{i=1}^{k} t_{n_{i},p_{i}}}{t_{n,1}}$$

$$= \frac{[x^{n-|\Delta|}] \left(\prod_{i=1}^{k} T_{p_{i}}(x)\right)}{[x^{n}]T_{1}(x)}$$

$$\rightarrow \left(\prod_{i=1}^k T_{p_i}(\rho)\right) \cdot \sum_{j=i}^k \frac{C_j \rho^{|\Delta|}}{C_1 T_{p_j}(\rho)}$$

[Angel Schramm 03]

- First proof of weak convergence
- One end a.s.
- Spatial Markov Property: "the part of the UIPT inside a simple cycle is independent of the rest of the triangulation and its law only depends on the length of the cycle"

Metric properties:

Volume (nb. of vertices) and perimeters of balls known to some extent.

For example
$$\mathbb{E}\left[|B_r(\mathbf{T}_\infty)|\right] \sim \frac{2}{7} r^4$$
 [Curien – Le Gall 12]

Metric properties:

Volume (nb. of vertices) and perimeters of balls known to some extent.

For example
$$\mathbb{E}\left[|B_r(\mathbf{T}_\infty)|\right] \sim \frac{2}{7}r^4$$
 [Curien – Le Gall 12]

- Volume of hulls explicit [M. 16]
- "Uniqueness" of geodesic rays and horofunctions [Curien M. 18]

Metric properties:

Volume (nb. of vertices) and perimeters of balls known to some extent.

For example
$$\mathbb{E}\left[|B_r(\mathbf{T}_\infty)|\right] \sim \frac{2}{7} r^4$$
 [Curien – Le Gall 12]

- Volume of hulls explicit [M. 16]
- "Uniqueness" of geodesic rays and horofunctions [Curien M. 18]

Bond and site percolation well understood

[Angel, Angel-Curien, M.-Nolin, ...]

For example
$$p_c^{\rm site}=1/2$$
 and $p_c^{\rm bond}=(2\sqrt{3}-1)/11$ Curien –

[Bernardi – Curien – Miermont 17]

Metric properties:

Volume (nb. of vertices) and perimeters of balls known to some extent.

For example
$$\mathbb{E}\left[|B_r(\mathbf{T}_\infty)|\right] \sim \frac{2}{7}r^4$$
 [Curien – Le Gall 12]

- Volume of hulls explicit [M. 16]
- "Uniqueness" of geodesic rays and horofunctions [Curien M. 18]

Bond and site percolation well understood

```
[Angel, Angel–Curien, M.–Nolin, ...] 
 For example p_c^{\rm site}=1/2 and p_c^{\rm bond}=(2\sqrt{3}-1)/11 
 [Bernardi – Curien – Miermont 17]
```

Simple random Walk is recurrent [Gurel - Gurevich and Nachmias 13]

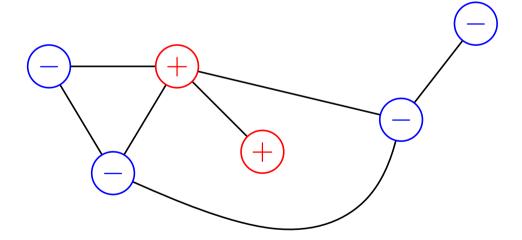
Adding matter: Ising model

How does Ising model influence the underlying map?

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:

$$G = (V, E)$$
 finite graph



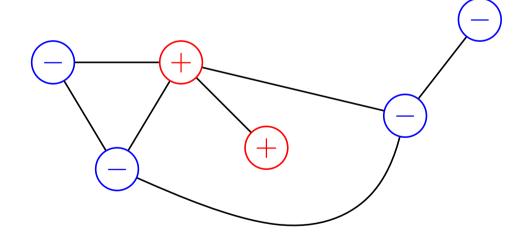
Spin configuration on G:

$$\sigma: V \to \{-1, +1\}.$$

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:

$$G = (V, E)$$
 finite graph



Spin configuration on G:

$$\sigma: V \to \{-1, +1\}.$$

Ising model on G: take a random spin configuration with probability

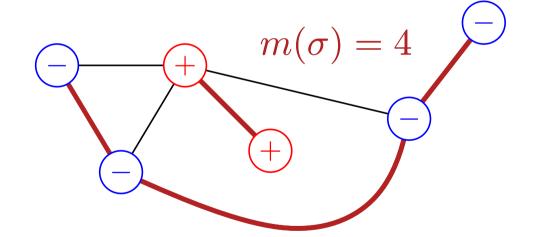
$$P(\sigma) \propto e^{-\frac{\beta}{2} \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) \neq \sigma(v')\}}}$$

 $\beta > 0$: inverse temperature.

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:

$$G = (V, E)$$
 finite graph



Spin configuration on G:

$$\sigma: V \to \{-1, +1\}.$$

Ising model on G: take a random spin configuration with probability

$$P(\sigma) \propto e^{-\frac{\beta}{2} \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) \neq \sigma(v')\}}}$$

 $\beta > 0$: inverse temperature.

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$

with $m(\sigma) =$ number of monochromatic edges and $\nu = e^{\beta}$.

 $\mathcal{T}_n = \{ \text{rooted planar triangulations with } 3n \text{ edges} \}.$

Random triangulation in \mathcal{T}_n with probability $\propto \nu^{m(T,\sigma)}$?

 $\mathcal{T}_n = \{ \text{rooted planar triangulations with } 3n \text{ edges} \}.$ Random triangulation in \mathcal{T}_n with probability $\propto \nu^{m(T,\sigma)}$? Generating series of Ising-weighted triangulations:

$$Q(\nu,t) = \sum_{T \in \mathcal{T}_f} \sum_{\sigma: V(T) \to \{-1,+1\}} \nu^{m(T,\sigma)} t^{e(T)}.$$

 $\mathcal{T}_n = \{ \text{rooted planar triangulations with } 3n \text{ edges} \}.$

Random triangulation in \mathcal{T}_n with probability $\propto \nu^{m(T,\sigma)}$?

Generating series of Ising-weighted triangulations:

$$Q(\nu, t) = \sum_{T \in \mathcal{T}_f} \sum_{\sigma: V(T) \to \{-1, +1\}} \nu^{m(T, \sigma)} t^{e(T)}.$$

Theorem [Bernardi – Bousquet-Mélou 11]

For every ν the series $Q(\nu,t)$ is algebraic, has $\rho_{\nu}>0$ as unique dominant singularity and satisfies

$$[t^{3n}]Q(\nu,t) \underset{n\to\infty}{\sim} \begin{cases} \kappa \, \rho_{\nu_c}^{-n} \, n^{-7/3} & \text{if } \nu = \nu_c := 1 + \frac{1}{\sqrt{7}}, \\ \kappa \, \rho_{\nu}^{-n} \, n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases}$$

This suggests an unusual behavior of the underlying maps for $\nu = \nu_c$. See also [Boulatov – Kazakov 1987], [Bousquet-Mélou – Schaeffer 03] and [Bouttier – Di Francesco – Guitter 04].

Adding matter: Watabiki's predictions

Counting exponent:

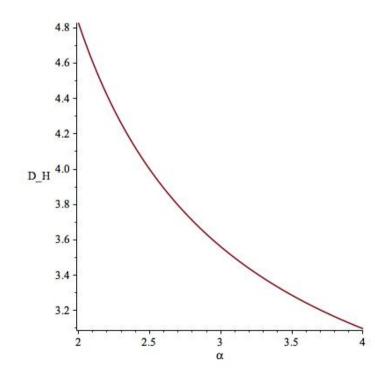
coeff $[t^n]$ of generating series of (decorated) maps $\sim \kappa \rho^{-n} n^{-\alpha}$

Central charge c:

$$\alpha = \frac{25 - c + \sqrt{(1 - c)(25 - c)}}{12}$$

Hausdorff dimension: [Watabiki 93]

$$D_H = 2\frac{\sqrt{25 - c} + \sqrt{49 - c}}{\sqrt{25 - c} + \sqrt{1 - c}}$$



Adding matter: Watabiki's predictions

Counting exponent:

coeff $[t^n]$ of generating series of (decorated) maps $\sim \kappa \rho^{-n} n^{-\alpha}$

Central charge *c*:

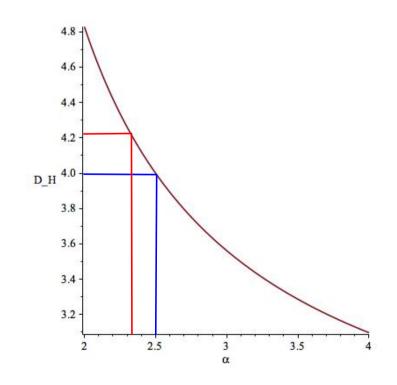
$$\alpha = \frac{25 - c + \sqrt{(1 - c)(25 - c)}}{12}$$

• $\alpha = 5/2$ gives $D_H = 4$

•
$$\alpha = 7/3$$
 gives $D_H = \frac{7+\sqrt{97}}{4} \approx 4.21$

Hausdorff dimension: [Watabiki 93]

$$D_H = 2\frac{\sqrt{25 - c} + \sqrt{49 - c}}{\sqrt{25 - c} + \sqrt{1 - c}}$$



Local convergence of triangulations with spins

Probability measure on triangulations of \mathcal{T}_n with a spin configuration:

$$\mathbb{P}_n^{\nu}\bigg(\{(T,\sigma)\}\bigg) = \frac{\nu^{m(T,\sigma)}}{[t^{3n}]Q(\nu,t)}.$$

Local convergence of triangulations with spins

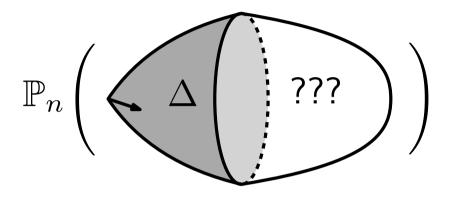
Probability measure on triangulations of \mathcal{T}_n with a spin configuration:

$$\mathbb{P}_n^{\nu}\bigg(\{(T,\sigma)\}\bigg) = \frac{\nu^{m(T,\sigma)}}{[t^{3n}]Q(\nu,t)}.$$

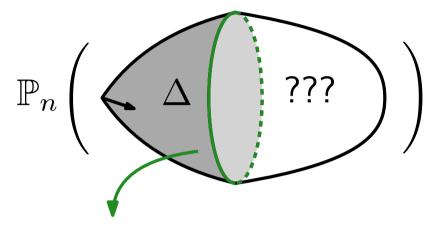
The plan:

- Local weak convergence of \mathbb{P}_n^{ν} .
- Will be one-ended $(\alpha > 2)$.
- Can we verify Watabiki's prediction ?

Need to evaluate, for every possible ball Δ (here, one boundary to keep it simple)

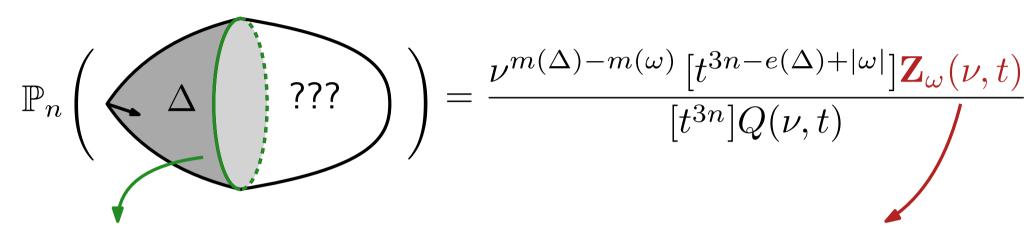


Need to evaluate, for every possible ball Δ (here, one boundary to keep it simple)



Simple (rooted) cycle, spins given by a word ω

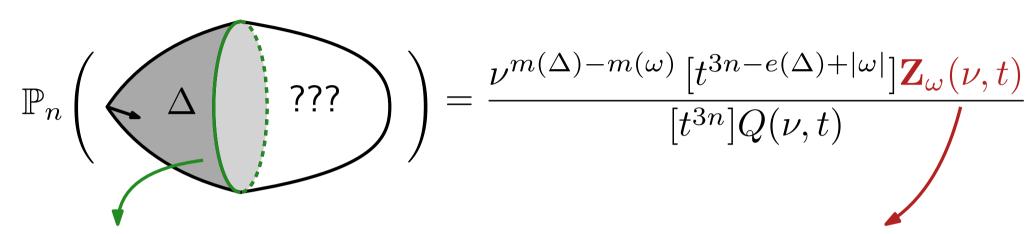
Need to evaluate, for every possible ball Δ (here, one boundary to keep it simple)



Simple (rooted) cycle, spins given by a word ω

 $\mathbf{Z}_{\omega}(
u,t):=$ generating series of triangulations with simple boundary ω

Need to evaluate, for every possible ball Δ (here, one boundary to keep it simple)



Simple (rooted) cycle, spins given by a word ω

 $\mathbf{Z}_{\omega}(
u,t):=$ generating series of triangulations with simple boundary ω

Theorem [Albenque – M. – Schaeffer 18+]

For every $\bar{\omega}$ and ν , the series $t^{|\omega|}Z_{\omega}(\nu,t)$ is algebraic, has $\rho_{\nu}=t_{\nu}^3$ as unique dominant singularity and satisfies

$$[t^{3n}]t^{|\omega|}Z_{\omega}(\nu,t) \underset{n\to\infty}{\sim} \begin{cases} \kappa_{\omega}(\nu_c) \, \rho_{\nu_c}^{-n} \, n^{-7/3} & \text{if } \nu = \nu_c := 1 + \frac{1}{\sqrt{7}}, \\ \kappa_{\omega}(\nu) \, \rho_{\nu}^{-n} \, n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases}$$

Triangulations with simple boundary

Fix a word ω , with injections from and into triangulations of the sphere:

$$[t^{3n}]t^{|\omega|}Z_{\omega}=\Theta\left(
ho_{\nu}^{-n}n^{-\alpha}\right), \text{ with } \alpha=5/2 \text{ of } 7/3 \text{ depending on } \nu.$$

To get exact asymptotics we need, as series in t^3 ,

- 1. algebraicity,
- 2. no other dominant singularity than ρ_{ν} .

Triangulations with simple boundary

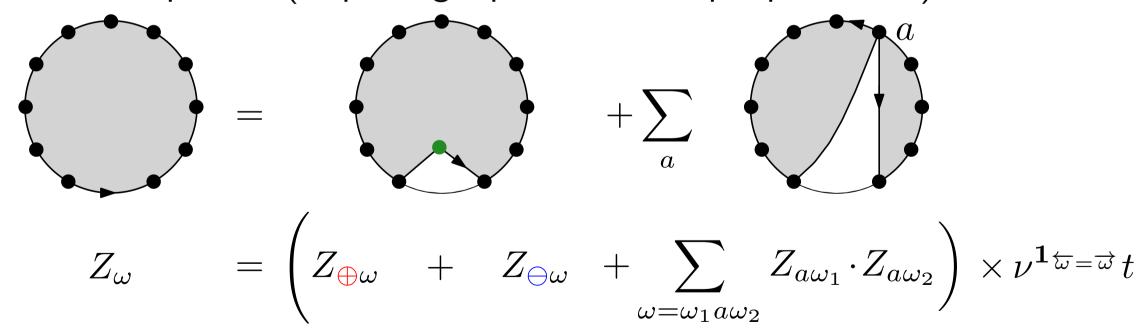
Fix a word ω , with injections from and into triangulations of the sphere:

$$[t^{3n}]t^{|\omega|}Z_{\omega}=\Theta\left(\rho_{\nu}^{-n}n^{-\alpha}\right), \text{ with } \alpha=5/2 \text{ of } 7/3 \text{ depending on } \nu.$$

To get exact asymptotics we need, as series in t^3 ,

- 1. algebraicity,
- 2. no other dominant singularity than ρ_{ν} .

Tutte's equation (or peeling equation, or loop equation...):



Triangulations with simple boundary

Fix a word ω , with injections from and into triangulations of the sphere:

$$[t^{3n}]t^{|\omega|}Z_{\omega}=\Theta\left(\rho_{\nu}^{-n}n^{-\alpha}\right), \text{ with } \alpha=5/2 \text{ of } 7/3 \text{ depending on } \nu.$$

To get exact asymptotics we need, as series in t^3 ,

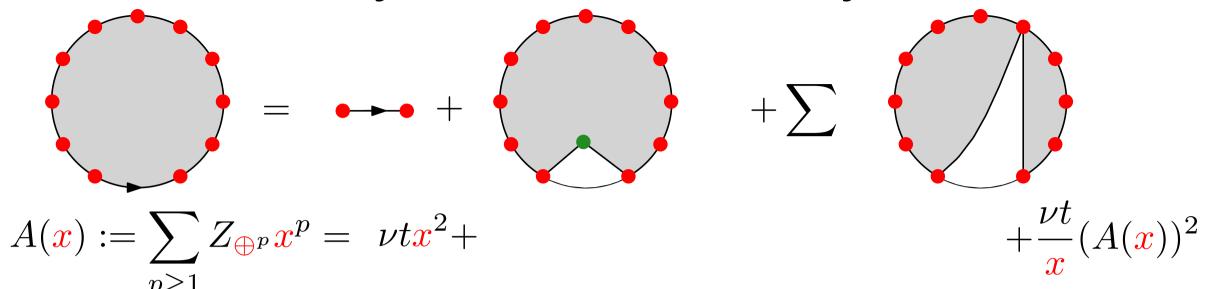
- 1. algebraicity,
- 2. no other dominant singularity than ρ_{ν} .

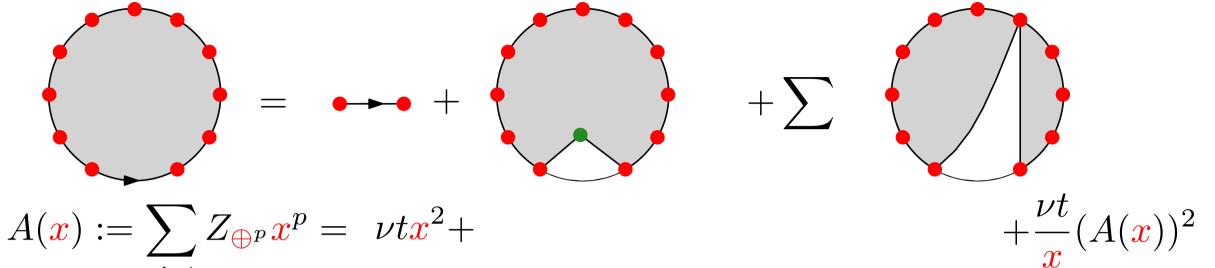
Tutte's equation (or peeling equation, or loop equation...):

$$= + \sum_{a}$$

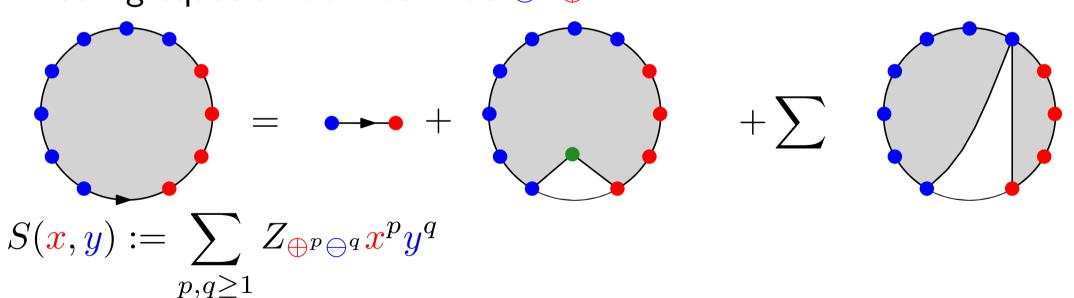
$$= \left(Z_{\oplus \omega} + Z_{\ominus \omega} + \sum_{\omega = \omega_1 a \omega_2} Z_{a\omega_1} \cdot Z_{a\omega_2} \right) \times \nu^{\mathbf{1}_{\varpi = \overrightarrow{\omega}}} t$$

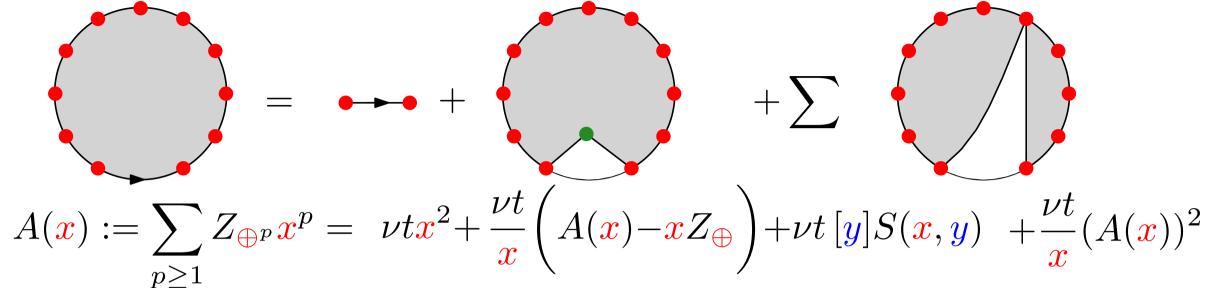
Double induction on $|\omega|$ and number of \ominus 's: enough to prove 1. and 2. for the $t^p Z_{\bigoplus p}$'s



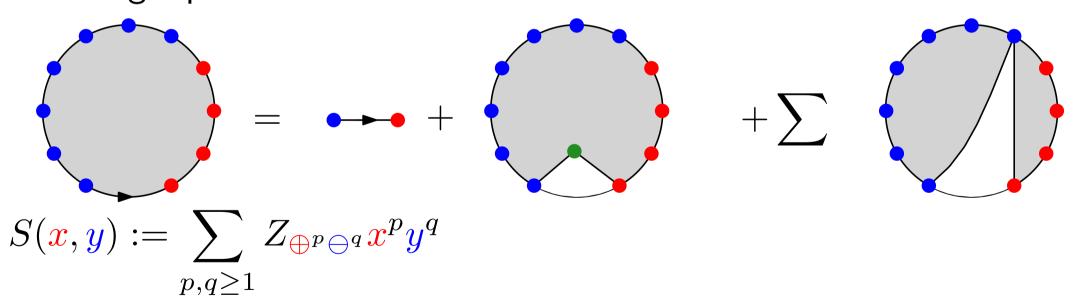


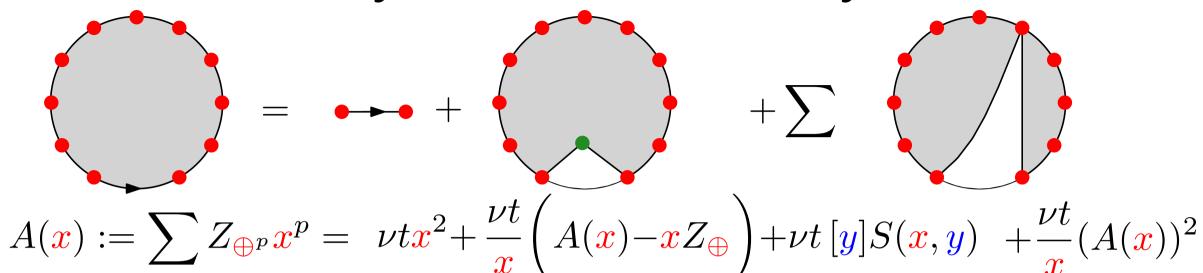
Peeling equation at interface ⊖-⊕:



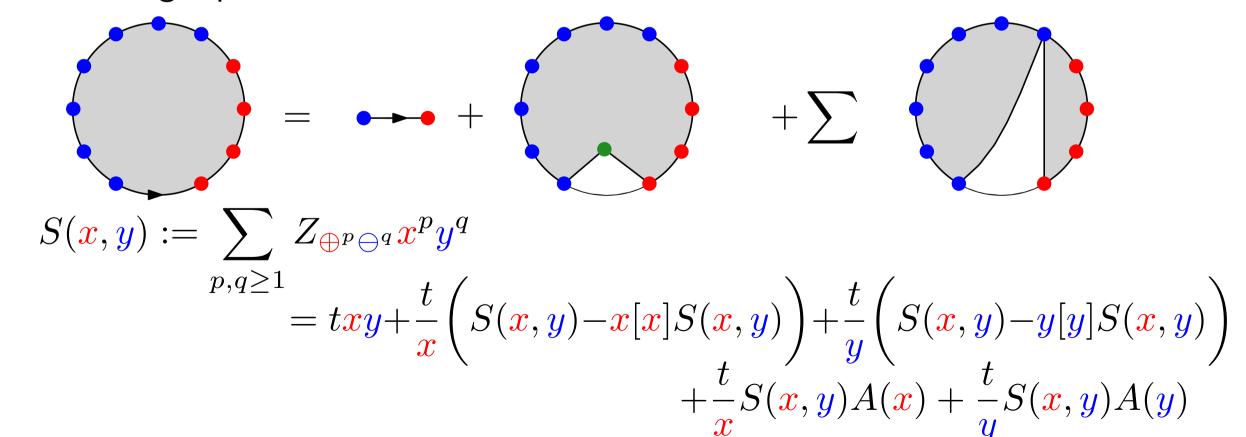


Peeling equation at interface ⊖-⊕:





Peeling equation at interface ⊖-⊕:



Kernel method: equation for S reads

$$K(\pmb{x},\pmb{y})\cdot S(\pmb{x},\pmb{y})=R(\pmb{x},\pmb{y})$$
 where
$$K(\pmb{x},\pmb{y})=1-\frac{t}{\pmb{x}}-\frac{t}{\pmb{y}}-\frac{t}{\pmb{x}}A(\pmb{x})-\frac{t}{\pmb{y}}A(\pmb{y}).$$

Kernel method: equation for S reads

$$K(\pmb{x},\pmb{y})\cdot S(\pmb{x},\pmb{y})=R(\pmb{x},\pmb{y})$$
 where
$$K(\pmb{x},\pmb{y})=1-\frac{t}{\pmb{x}}-\frac{t}{\pmb{y}}-\frac{t}{\pmb{x}}A(\pmb{x})-\frac{t}{\pmb{y}}A(\pmb{y}).$$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x,Y_i/t)=0$.

Kernel method: equation for S reads

$$K(\pmb{x},\pmb{y})\cdot S(\pmb{x},\pmb{y})=R(\pmb{x},\pmb{y})$$
 where
$$K(\pmb{x},\pmb{y})=1-\frac{t}{\pmb{x}}-\frac{t}{\pmb{y}}-\frac{t}{\pmb{x}}A(\pmb{x})-\frac{t}{\pmb{y}}A(\pmb{y}).$$

1. Find **two** series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x,Y_i/t)=0$. It gives $\frac{1}{Y_1}\left(A(Y_1/t)+1\right)=\frac{1}{Y_2}\left(A(Y_2/t)+1\right)$.

Kernel method: equation for S reads

$$K(\pmb{x},\pmb{y})\cdot S(\pmb{x},\pmb{y})=R(\pmb{x},\pmb{y})$$
 where
$$K(\pmb{x},\pmb{y})=1-\frac{t}{\pmb{x}}-\frac{t}{\pmb{y}}-\frac{t}{\pmb{x}}A(\pmb{x})-\frac{t}{\pmb{y}}A(\pmb{y}).$$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x,Y_i/t)=0$.

It gives
$$\frac{1}{Y_1}(A(Y_1/t)+1)=\frac{1}{Y_2}(A(Y_2/t)+1)$$
.

 $I(y) := \frac{1}{y} \left(A(y/t) + 1 \right)$ is called an **invariant**.

Kernel method: equation for S reads

$$K(\pmb{x},\pmb{y})\cdot S(\pmb{x},\pmb{y})=R(\pmb{x},\pmb{y})$$
 where
$$K(\pmb{x},\pmb{y})=1-\frac{t}{\pmb{x}}-\frac{t}{\pmb{y}}-\frac{t}{\pmb{x}}A(\pmb{x})-\frac{t}{\pmb{y}}A(\pmb{y}).$$

1. Find **two** series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x,Y_i/t)=0$.

It gives
$$\frac{1}{Y_1}(A(Y_1/t)+1)=\frac{1}{Y_2}(A(Y_2/t)+1)$$
.

$$I(y) := \frac{1}{y} \left(A(y/t) + 1 \right)$$
 is called an **invariant**.

2. Work a bit with the help of $R(x, Y_i/t) = 0$ to get a **second invariant** J(y) depending only on $t, Z_{\oplus}(t), y$ and A(y/t).

Kernel method: equation for S reads

$$K(\pmb{x},\pmb{y})\cdot S(\pmb{x},\pmb{y})=R(\pmb{x},\pmb{y})$$
 where
$$K(\pmb{x},\pmb{y})=1-\frac{t}{\pmb{x}}-\frac{t}{\pmb{y}}-\frac{t}{\pmb{x}}A(\pmb{x})-\frac{t}{\pmb{y}}A(\pmb{y}).$$

- 1. Find **two** series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x,Y_i/t)=0$. It gives $\frac{1}{Y_1}\left(A(Y_1/t)+1\right)=\frac{1}{Y_2}\left(A(Y_2/t)+1\right)$.
 - $I(y) := \frac{1}{y} \left(A(y/t) + 1 \right)$ is called an **invariant**.
- 2. Work a bit with the help of $R(x, Y_i/t) = 0$ to get a **second invariant** J(y) depending only on $t, Z_{\oplus}(t), y$ and A(y/t).
- 3. Prove that $J(y) = C_0(t) + C_1(t)I(y) + C_2(t)I^2(y)$ with C_i 's explicit polynomials in $t, Z_{\oplus}(t)$ and $Z_{\oplus^2}(t)$.

Equation with one catalytic variable for A(y) with Z_{\oplus} and Z_{\oplus^2} !

Explicit solution for positive boundary conditions

Equation with one catalytic variable reads:

$$2t^{2}\nu(1-\nu)\left(\frac{A(y)}{y}-Z_{\oplus}\right)=y\cdot\operatorname{Pol}\left(\nu,\frac{A(y)}{y},Z_{\oplus},Z_{\oplus^{2}},t,y\right)$$

[Bousquet-Mélou – Jehanne 06] gives algebraicity and strategy to solve this kind of equation.

Explicit solution for positive boundary conditions

Equation with one catalytic variable reads:

$$2t^{2}\nu(1-\nu)\left(\frac{A(y)}{y}-Z_{\oplus}\right)=y\cdot\operatorname{Pol}\left(\nu,\frac{A(y)}{y},Z_{\oplus},Z_{\oplus^{2}},t,y\right)$$

[Bousquet-Mélou – Jehanne 06] gives algebraicity and strategy to solve this kind of equation.

Much easier: [Bernardi – Bousquet Mélou 11] gives us Z_{\oplus} and Z_{\oplus^2} !

Explicit solution for positive boundary conditions

Equation with one catalytic variable reads:

$$2t^{2}\nu(1-\nu)\left(\frac{A(y)}{y}-Z_{\oplus}\right)=y\cdot\operatorname{Pol}\left(\nu,\frac{A(y)}{y},Z_{\oplus},Z_{\oplus^{2}},t,y\right)$$

[Bousquet-Mélou – Jehanne 06] gives algebraicity and strategy to solve this kind of equation.

Much easier: [Bernardi – Bousquet Mélou 11] gives us Z_{\oplus} and $Z_{\oplus^2}!$

Maple: rational (and Lagrangian) parametrization!

$$t^3 = U \frac{P_1(\mu, U)}{4(1-2U)^2(1+\mu)^3}$$

$$y = V \frac{P_2(\mu, U, V)}{(1-2U)(1+\mu)^2(1-V)^2}$$
 with $\nu = \frac{1+\mu}{1-\mu}$ and
$$P_i$$
's explicit polynomials.
$$t^3 A(t, ty) = \frac{V P_3(\mu, U, V)}{4(1-2U)^2(1+\mu)^3(1-V)^3}$$

1. Fix $r \geq 0$ and take Δ a r-ball with boundary spins $\partial \Delta = (\omega_1, \ldots, \omega_k)$:

$$\mathbb{P}_{n}\left(B_{r}(T, \nu) = \Delta\right) = \frac{\nu^{m(\Delta) - m(\partial \Delta)} \left[t^{3n - e(\Delta) + |\partial \Delta|}\right] \left(\prod_{i=1}^{k} Z_{\omega_{i}}(\nu, t)\right)}{\left[t^{3n}\right] Q(\nu, t)}$$

$$\xrightarrow[n \to \infty]{} \left(\prod_{i=1}^{k} Z_{\omega_{i}}(\nu, t_{\nu})\right) \cdot \sum_{i=1}^{k} \frac{\nu^{m(\Delta) - m(\partial \Delta)} t_{\nu}^{|\Delta| - |\omega|} \kappa_{\omega_{j}}}{\kappa t_{\nu}^{|\omega_{j}|} Z_{\omega_{j}}(\nu, t_{\nu})}.$$

1. Fix $r \geq 0$ and take Δ a r-ball with boundary spins $\partial \Delta = (\omega_1, \ldots, \omega_k)$:

$$\mathbb{P}_{n}\left(B_{r}(T, \nu) = \Delta\right) = \frac{\nu^{m(\Delta) - m(\partial \Delta)} \left[t^{3n - e(\Delta) + |\partial \Delta|}\right] \left(\prod_{i=1}^{k} Z_{\omega_{i}}(\nu, t)\right)}{\left[t^{3n}\right] Q(\nu, t)}$$

$$\xrightarrow[n \to \infty]{} \left(\prod_{i=1}^{k} Z_{\omega_{i}}(\nu, t_{\nu})\right) \cdot \sum_{j=1}^{k} \frac{\nu^{m(\Delta) - m(\partial \Delta)} t_{\nu}^{|\Delta| - |\omega|} \kappa_{\omega_{j}}}{\kappa t_{\nu}^{|\omega_{j}|} Z_{\omega_{j}}(\nu, t_{\nu})}.$$

2. Remains to prove tightness.

1. Fix $r \geq 0$ and take Δ a r-ball with boundary spins $\partial \Delta = (\omega_1, \ldots, \omega_k)$:

$$\mathbb{P}_{n}\left(B_{r}(T,v)=\Delta\right) = \frac{\nu^{m(\Delta)-m(\partial\Delta)}\left[t^{3n-e(\Delta)+|\partial\Delta|}\right]\left(\prod_{i=1}^{k}Z_{\omega_{i}}(\nu,t)\right)}{\left[t^{3n}\right]Q(\nu,t)}$$

$$\xrightarrow[n\to\infty]{} \left(\prod_{i=1}^{k}Z_{\omega_{i}}(\nu,t_{\nu})\right) \cdot \sum_{j=1}^{k}\frac{\nu^{m(\Delta)-m(\partial\Delta)}t_{\nu}^{|\Delta|-|\omega|}\kappa_{\omega_{j}}}{\kappa t_{\nu}^{|\omega_{j}|}Z_{\omega_{j}}(\nu,t_{\nu})}.$$

- 2. Remains to prove tightness.
 - Maps are uniformly rooted: tightness of root degree is enough

1. Fix $r \geq 0$ and take Δ a r-ball with boundary spins $\partial \Delta = (\omega_1, \ldots, \omega_k)$:

$$\mathbb{P}_{n}\left(B_{r}(T, \nu) = \Delta\right) = \frac{\nu^{m(\Delta) - m(\partial \Delta)} \left[t^{3n - e(\Delta) + |\partial \Delta|}\right] \left(\prod_{i=1}^{k} Z_{\omega_{i}}(\nu, t)\right)}{\left[t^{3n}\right] Q(\nu, t)}$$

$$\xrightarrow[n \to \infty]{} \left(\prod_{i=1}^{k} Z_{\omega_{i}}(\nu, t_{\nu})\right) \cdot \sum_{j=1}^{k} \frac{\nu^{m(\Delta) - m(\partial \Delta)} t_{\nu}^{|\Delta| - |\omega|} \kappa_{\omega_{j}}}{\kappa t_{\nu}^{|\omega_{j}|} Z_{\omega_{j}}(\nu, t_{\nu})}.$$

- 2. Remains to prove tightness.
 - Maps are uniformly rooted: tightness of root degree is enough
 - We show that expected degree at the root under \mathbb{P}_n is bounded with n

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end a.s.

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end a.s.
- A spatial Markov property.
- Some links with Boltzmann triangulations.

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end a.s.
- A spatial Markov property.
- Some links with Boltzmann triangulations.

In progress:

- Recurrence of SRW (vertex degrees have exponential tails)
- Cluster properties.

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end a.s.
- A spatial Markov property.
- Some links with Boltzmann triangulations.

In progress:

- Recurrence of SRW (vertex degrees have exponential tails)
- Cluster properties.

What we would like to know:

- Singularity with respect to the UIPT?
- Volume growth?

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end a.s.
- A spatial Markov property.
- Some links with Boltzmann triangulations.

In progress:

- Recurrence of SRW (vertex degrees have exponential tails)
- Cluster properties.

What we would like to know:

- Singularity with respect to the UIPT?
- Volume growth?
- At least volume growth $\neq 4$ at ν_c ?

Summer school Random trees and graphs
July 1 to 5, 2019 in Marseille France
Org. M. Albenque, J. Bettinelli, J. Rué and L.M.

Summer school Random walks and models of complex networks

July 8 to 19, 2019 in Nice

Org. B. Reed and D. Mitsche

Thank you for your attention!