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What is machine learning ?

➢ An attempt to reproduce actions of consciousness in a 

computer. There are two directions of research:

1. By teaching a computer on various rules, we design a 

machine which can judge things like humans.              

(e.g., Expert system)

2. By emulating a structure of human brain, we design a 

machine which can learn and judge information.         

→ Machine learning (ML)

➢ Both researches are ongoing now, but recently        

the latter has been greatly developed.

It finds 

the rules!



Structure of human brain

➢ Human brain has about 100 billion neurons（神経細胞）

and they are connected via axons（軸索）.

神経細胞



 A neuron receives electric signals sent from other 

neurons through axons.

 If a sum of input signal exceeds a threshold, the neuron 

fires and sends a signal to other connected neurons.

Sum of input

Output

神経細胞

神経細胞

Inputs



 Humans repeat trials and errors. After such experiences, 

our neurons renew a way to exchange the signals

so that we can judge various things more properly.

→This is nothing but “learning.”

神経細胞

Output =

Inputs 𝑣𝑖
weights 𝑤𝑖

bias (threshold) 𝑏
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➢ By emulating a structure of brain, we make an algorithm 

of machine learning.

 We reproduce a network of neurons exchanging signals, 

such that

➢ We adjust weights 𝑤𝑖𝑎 and bias 𝑏𝑎
so that the final output approaches                              

desired values (answer) for us. 

Algorithm of machine learning

input
information

final
output

nonlinear function (activation function)

“training”



➢ As an activation function, we don’t use step function 

but sigmoid function (left) or ReLU (right), because of 

analyticity.

 For the final output, the softmax function is often used, 

since we can interpret the output as probability.

tanh, too



➢ In order to adjust weights 𝑤𝑖𝑎 and bias 𝑏𝑎…

 We choose the loss function which evaluates difference 

between output at present and desired output.

Square sum or relative entropy is often chosen.

 Then we calculate weights and bias such that the loss 

function becomes the minimum.            

Analytical calculation is impossible, since we                                     

can’t solve nonlinear eqs with many variables.

 Instead, we use numerical calculations                              

to find (practically) a local minimum

by iterative approximation.

For probability distributions (later)

“training”

output



➢ Using such an algorithm, we can get interesting results. 

For example, 

Google’s cat (in 2012)

A network of neurons (neural network, NN)

Input 10 million still images 

clipped from YouTube movies.

Desired output

= input itself

(autoencoder)
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Humans don’t 

teach anything 

but inputs!

(unsupervised)

[Le et al., ’12]



➢ What do the neurons learn?

 If we make images which only a specific neuron react to,       

a human face or a cat’s face appears. 

 There are also neurons which react to simpler figures,   

such as a line, an edge or a triangle.

 In general, neurons in deep layer react to complicated things. 

(We deepen a NN to combine many autoencoders.)

 This may reproduce a human process of grasping “features.”

deep
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➢ What does grasping “features” mean?

 An image contains various information, but we extract an 

important part as its features and drop the other parts.

 It is similar to the coarse graining, and then may be related 

to the renormalization group (RG).

 Going along the RG flow, relevant parameters (~ features)  

are emphasized while irrelevant parameters are dropped.

➢ Let us discuss a relation of feature extraction in ML 

and renormalization in physics!

[Mehta-Schwab, ’14]

[Lin-Tegmark-Rolnick, ’16]

[Sato, ’16]

[Aoki-Kobayashi, ’16]

[Koch-Janusz, Ringel, ’17]

renormalization

(coarse graining)

iterative RG 

transformations



Our experiments and results



Our experiment (1)

1. We generate spin configurations of Ising model

(black-and-white images) using Monte Carlo simulation,       

since we know well about RG in Ising model.

2. We train a NN so that when we input the configs     

it outputs images as similar as possible to inputs. 

(Autoencoder, unsupervised learning)

3. After training (the weight is fixed),

we input again the output configs.                            

Doing this iteratively, we obtain                             

the flow of configs.

[Iso-SSF-Yokoo, ’18]

[SSF-Giataganas, ’18]

Relation to 

RG flow?
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Autoencoder (unsupervised learning)

➢ An autoencoder, which plays important roles in “Google’s cat,”

is believed to extract “features” of input images.

 It can be related to the coarse graining:                               

a NN compresses images and then reconstructs them.

 We train a NN so that it outputs                                      

the (ideally) same images as inputs                                         

with the same probability.

 This type of autoencoder is called                                

Restricted Boltzmann Machine (RBM).

Inputs contain configs 

at various (𝑇, 𝐻)



 The probability to output an image is defined, using the 

“energy” function

by Boltzmann distribution

 We train the RBM (weights and bias)

so that the relative entropy                                          

approaches a local minimum.

weights 𝑤𝑖𝑎, bias 𝑏𝑎, 𝑐𝑖

visible
hidden

Distance between 

probability distributions

Statistical 

physics



 The relative entropy is also called KL divergence:

prob of an input image = 𝑣𝑖 /  prob of an output image = 𝑣𝑖

➢ In our experiments, the input images are the spin configs in 

Ising model:  𝑣𝑖 = ±1 for a white/black pixel.

 The expectation values of outputs are those of spins: 

 The final output (reconstructed) images have spins 𝑣𝑖 = ±1

by replacing an EV 𝑣𝑖 with a probability (1 ± 𝑣𝑖 )/2.
To keep 

same EV



 The probability distribution of input configs 𝑞 𝑣𝑖 and   

that of output configs 𝑝({𝑣𝑖}) are slightly different,          

even after the training finished.                                            

(It’s because the KL divergence cannot be zero, practically.)

 If we input again the output configs, we obtain another 

prob distribution ෨𝑝 𝑣𝑖 of reconstructed configs. 

 Doing this iteratively, we get the flow of prob distribution 

of spin configs:  𝑞 𝑣𝑖 → 𝑝({𝑣𝑖}) → ෨𝑝( 𝑣𝑖 ) → …

➢ Questions: 

1. Does the “RBM flow” correspond to the RG flow?

2. Does it have the fixed points describing the “features”? 

(The features are emphasized along the RBM flow.)

This is a well-defined question!



Our experiment (2)

➢ We check if the RBM flow is related to the RG flow.

 Let us translate the flow of spin configs into a flow of 

physical quantities (temperature 𝑇 and magnetic field 𝐻),     

since it makes our discussion easier.  

 To do this, we train another NN to output correct values of 

(𝑇, 𝐻) of input configs.  (supervised learning)

 Using this NN, we get a flow of the                                        

physical quantities 𝜙 = 𝑇,𝐻 :

𝜙 𝑣𝑖 → ෨𝜙({𝑣𝑖}) →
෨෨𝜙( 𝑣𝑖 ) → …

[Iso-SSF-Yokoo, ’18]

[SSF-Giataganas, ’18]
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➢ For example, in 2d Ising model (at H=0),

 RG flow goes away from the critical temperature 𝑇𝑐 = 2.27

and approaches to 𝑇 = 0,∞.

 If RBM flow behaves similarly, it should correspond to the 

RG flow (as we expected).

NN for measurement

(supervised learning)

RBM

(unsupervised learning)
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Phase transition occurs
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𝐽 = 1 fixed



Results: obviously different!

 The RBM flow approaches the critical point, while goes away 

from 𝑇 = 0,∞. It’s the opposite direction to the RG flow!

 Data: configs in 10x10 lattice, 1000 configs at each T=0, 0.25, …, 6, H=0. 

(Same results when T=0, 0.25, …, 10, ∞ / T=0, 0.25,…, 2 and 4, 4.25,…, 6.)

 RBM: 𝑛𝑣 = 100, 𝑛ℎ ≤ 𝑛𝑣, learning rate = 0.1, epoch = 5000

Reconstruction of T=0 configs Reconstruction of T=6 configs

[Iso-SSF-Yokoo, ’18]
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➢ In 1d and 2d Ising models including 𝐻 ≠ 0 region:

 The RBM flow approaches the fixed points in (𝑇,𝐻) space. 

Wherever a start point is, the flow arrives at the same points.

 But they are different from the RG flow and its fixed points. 

 Data: configs in 100 (1d) or 10x10 (2d) lattice, 1000 configs at each (T,H), 

where T=0, 0.5, …, 9.5 and H=0, 0.5, …, 4.5.

 RBM: 𝑛𝑣 = 100, 𝑛ℎ ≤ 16, learning rate = 0.001, epoch = 10000

[SSF-Giataganas, ’18]

1d 2d
explain it later

𝑇 𝑇𝐻 𝐻

𝑛ℎ = 9



Discussions on our results



RBM flow has fixed points!

➢ This is (perhaps the only) similarity to RG flow.

 The fixed points are in the space of physical quantities (𝑇, 𝐻),  

not that of configurations.

 Along RBM flow the extracted features are emphasized, then 

its fixed points should be the “features” of learning data.

➢ In 2d case at H=0, fixed points exist at the same point.

 But the flows go in the opposite directions.                      

(stable pt in RBM flow = unstable pt in RG flow)

 What is the “feature” extracted by the RBM?                       

It is probably the scale invariance…?

𝑇 = 𝑇𝑐

proposal



Some evidence for scale invariance

➢ Let us compare the two kinds of RBM by analyzing    

the RBM flows and their weights.

 One is the RBM trained by configs at only low temps.

 The other is the RBM learning various temps                  

𝑇 = 0, 0.25,… , 6 (and H=0).

RBM learning T=0, …, 6RBM learning only T=0

low temp

high temp

[Iso-SSF-Yokoo, ’18]

large scale 



➢ Eigenvalues of weights σ𝑎𝑤𝑖𝑎𝑤𝑗𝑎

 If the RBM learns configs at only low temps,                        

only a few (~5) eigenvalues are especially large.

 If the RBM learns configs at 𝑇 = 0, 0.25,… , 6 (including high temp)

all the eigenvalues have similar values.                                  

This may be because many hidden neurons are needed to learn 

configs at various temps (=various scales).

log |𝜆𝑎|

RBM: only T=0 RBM:T=0,…,6

𝑛ℎ

log |𝜆𝑎|

𝑛ℎ

independent from basis of hidden neurons 



➢ Eigenvectors of 𝑤𝑤𝑇

 RBM learning only low temps (𝑇 = 0,… , 2, 𝑛ℎ = 16)

 RBM learning various temps (𝑇 = 0,… , 6, 𝑛ℎ = 16)

Configs with 

large scale 

have large 

eigenvalues.

Configs with 

various scales 

have similar 

eigenvalues!

Scale invariance…?

All of them appears in 

reconstructed images.



General property of fixed points?

➢ Scale invariance is not a unique choice for “feature”.

 Configs around 𝑇 = 𝑇𝑐 also show the critical behavior of 

thermodynamic quantities (specific heat, magnetization, …).

 Let us study the relation of RBM flow and thermodynamics. 

This gives us further understanding on its behavior.

 Then RBM learning 𝐻 ≠ 0 configs show a clear difference 

from RG flow and a close relation to thermodynamics.

𝐶2nd order  

phase transition

(at H=0)



➢ In 1d Ising model, we can obtain the exact solutions of 

RG flow and thermodynamic quantities (even in 𝐻 ≠ 0).

 RG flow goes in a unique direction. The fixed points are at 

𝑇,𝐻 = 0,0 , 0,∞ , (∞,∗).

 RBM flow approaches to aligned points, so the direction is 

not unique. These fixed points can be fit very well by     

(local) maximal specific heat.

𝐻/𝑇

1/𝑇

𝑇

𝐻
x

x

RG flow

RBM flow

completely 

different!

[SSF-Giataganas, ’18]



➢ In 2d model we cannot get the exact solutions in 𝐻 ≠ 0. 

Then we use the Bethe approximation for analytic calculation and 

numerical calculation using Monte Carlo simulation.

 RG flow has the critical fixed point only at H=0.

 RBM flow behaves similarly to 1d case:                                   

It approaches the aligned points (= fixed points).

 The fixed points are coincident                                             

again with local maximum of                                                 

specific heat (𝜕𝐶/𝜕𝑇)𝐻 = 0.

 It includes the critical point,                                               

so the maximal specific heat

is its suitable generalization.

 This should be the “feature”.

critical

point
RBM flow

𝑇

𝐻

x

[SSF-Giataganas, ’18]

more 

general

proposal



RBM can learn thermodynamics?

➢ It seems strange because the specific heat 𝐶 = 𝜕𝐸/𝜕𝑇 cannot 

be directly measured in the input configurations.

 If the RBM can, it must use wisely the “energy” function

 This “RBM energy” seems                                                    

correlated with physical

energy, but not coincident. 

 Data: 2d configs at 𝑇 = 𝑇𝑐, 𝐻 = 0.

 RBM: 𝑛𝑣 = 100, 𝑛ℎ = 4

function of weights and biases

in Boltzmann distribution

Hamiltonian

𝑝~𝑒−𝐸/𝑇𝑐



𝑛ℎ = 4

RBM fixed pt

𝑛ℎ = 49

RBM fixed pt

➢ The relation of RBM energy and physical energy should 

be clarified to understand the feature extraction further.

 This relation is easily changed

by details of training.                                                          

(e.g., 𝑛ℎ, learning epoch, …)

 Nevertheless, RBM flows

have the same fixed points                                                   

in (𝑇, 𝐻) space and with                                                     

similar physical energy,                                                       

corresponding to “feature”.

 So far I cannot grasp what                                                

is essential here. This is an                                               

important future work.



Summary & future directions

➢ We perform a machine learning of the RBM to extract the 

features of spin configurations in Ising model.

➢ We find that the flow of reconstructed images by RBM has 

the fixed points (=“features”) just as the RG flow,             

but their behaviors are obviously different.

➢ We propose that the features the RBM grasps should be 

scale invariance and maximal specific heat. 

➢ How the RBM learns thermodynamics must be clarified.

 Relation of “RBM energy” and physical energy is an important 

subject of future works.

 “RBM flow” may be related to the way of human recognition…


