Topological aspects of Colored Tensor Models

Paola Cristofori University of Modena and Reggio Emilia

International Workshop on the Physics and Mathematics of Discrete Geometries Nagoya, November 5-9, 2018

joint works with M.R. Casali - S. Dartois - L. Grasselli

Outline

1 Colored graphs and Colored Tensor Models

2 Colored graphs and pseudomanifolds

3 Properties of the Gurau degree

글 🖌 🔺 글 🕨

(d+1)-colored graphs

(d+1)-colored graph (Γ, γ)

- $\Gamma = (V(\Gamma), E(\Gamma))$ regular graph of degree d + 1,
- $\gamma: E(\Gamma) \to \Delta_d = \{0, \dots, d\}$ such that $\gamma(e) \neq \gamma(f)$ for each pair of adjacent edges $e, f \in E(\Gamma)$ (*edge-coloration*)

graph = multigraph (multiple edges allowed, loops forbidden)

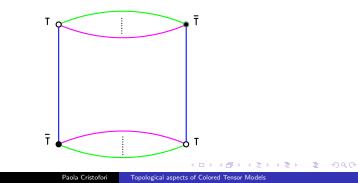
・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Tensor invariants encoded by *d*-colored graphs

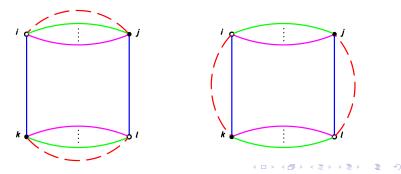
- White (black) vertices for $T(\overline{T})$
- Edges colored by the position of the index

Example:

$$Q(T,\overline{T}) = \sum_{\substack{i_1,...,i_d=1\\j_1,...,j_d=1}}^{N} \overline{T}_{i_1,i_2,...,i_d} T_{j_1,i_2,...,i_d} \overline{T}_{j_1,j_2,...,j_d} T_{i_1,j_2,...,j_d}$$



$$\langle Q(T,\overline{T}) \rangle = \sum_{\{i_n,j_n,l_n,k_n=1\}_{1 \le n \le d}}^{N} \delta_{i_1k_1} \delta_{j_1l_1} \left(\prod_{p=2}^{d} \delta_{i_pj_p} \right) \left(\prod_{q=2}^{d} \delta_{l_qk_q} \right)$$
$$\left(\langle \overline{T}_{i_1...i_d} T_{j_1...j_d} \rangle \langle \overline{T}_{l_1...l_d} T_{k_1...k_d} \rangle + \langle \overline{T}_{i_1...i_d} T_{k_1...k_d} \rangle \langle \overline{T}_{l_1...l_d} T_{j_1...j_d} \rangle \right)$$



Colored Tensor Models (CTM)

A (d + 1)-dimensional Colored Tensor Model is a formal partition function defined by a formal integral:

$$\mathcal{Z}[N, \{t_B\}_{B \in \mathcal{CG}(d)}] := \int_{\mathsf{f}} \frac{dT d\overline{T}}{(2\pi)^{N^d}} e^{-N^{d-1}\overline{T} \cdot T + \sum_B \alpha_B B(\overline{T}, T)}$$

where

- $T, \overline{T} \in \otimes_d \mathbb{C}^N$
- $\mathcal{CG}(d)$ is the set of bipartite *d*-colored graphs
- $B(\overline{T},T)$ invariant encoded by a *d*-colored graph $B\in\mathcal{CG}(d)$

通 ト イ ヨ ト イ ヨ ト ー

G-degree (R. Gurau)

If (Γ, γ) is a (d + 1)-colored graph of order 2*p*, set:

$$\omega_G(\Gamma) = \frac{(d-1)!}{2} \left(d + \frac{d}{2} (d-1) \rho - \sum_{r,s \in \Delta_d} g_{rs} \right)$$

 $g_{rs} =$ number of $\{r, s\}$ -colored cycles of Γ

* E * * E *

Theorem (Bonzom-Gurau)

If $\alpha_B = N^{d-1-\frac{2}{(d-2)!}\omega_G(B)} \frac{t_B}{|\operatorname{Aut}(B)|}$

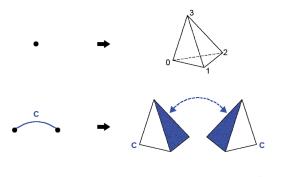
the free energy $\frac{1}{N^d} \log \mathcal{Z}[N, \{t_B\}]$ is

$$\sum_{\omega_G \ge 0} N^{-\frac{2}{(d-1)!}\omega_G} F_{\omega_G}[\{t_B\}] \in \mathbb{C}[[N^{-1}, \{t_B\}]] \qquad (\frac{1}{N} \text{ expansion})$$

where the coefficients $F_{\omega_G}[\{t_B\}]$ are generating functions of *connected* (d + 1)-colored graphs with fixed Gurau degree ω_G

The pseudocomplex $K(\Gamma)$

- take a *d*-simplex σ(x) for every vertex x ∈ V(Γ), and label its vertices by Δ_d;
- if x, y ∈ V(Γ) are joined by a c-colored edge, identify the (d − 1)-faces of σ(x) and σ(y) opposite to c-labelled vertices, so that equally labelled vertices coincide.



- * $K(\Gamma)$ is a (closed) d-pseudomanifold
- * (Γ, γ) represents $|K(\Gamma)|$
- * If $M^d = |K(\Gamma)|$ is a closed manifold, (Γ, γ) is called a *gem* = "graph encoded manifold" of M^d .
- * Γ is the 1-skeleton of the dual complex of $K(\Gamma)$

- * $K(\Gamma)$ is a (closed) d-pseudomanifold
- * (Γ, γ) represents $|K(\Gamma)|$
- * If $M^d = |K(\Gamma)|$ is a closed manifold, (Γ, γ) is called a *gem* = "graph encoded manifold" of M^d .
- * Γ is the 1-skeleton of the dual complex of $K(\Gamma)$

Definition

A singular (PL) *d*-manifold (d > 1) is a compact connected *d*-dimensional polyhedron admitting a simplicial triangulation where the links of vertices are closed connected (d - 1)-manifolds, while the links of all *h*-simplices with h > 0 are PL (d - h - 1)-spheres. Vertices whose links are not PL (d - 1)-spheres are called singular.

Singular manifolds/bounded manifolds

$\{(closed) manifolds\} \subset \{singular manifolds\} \subset \{pseudomanifolds\}$

From a singular *d*-manifold N to a *d*-manifold with boundary \check{N} (by deleting regular neighbourhoods of singular vertices)

From a *d*-manifold M with boundary to a singular *d*-manifold \dot{M} (by capping off the boundary components with cones over them)

글 🖌 🔺 글 🕨

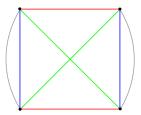
PROPERTIES

- $K(\Gamma)$ is orientable iff Γ is bipartite
- for each c ∈ Δ_d, the c-labelled vertices of K(Γ) are in bijection with the connected components of Γ_ĉ = Γ_{Δ_d-{c}}. (ĉ-residues of Γ). For each ĉ-residue Ξ, K(Ξ) is PL isomorphic to Lk(v_c, K'(Γ)).
- |K(Γ)| is a d-manifold (rep. singular d-manifold) if and only if, for every c ∈ Δ_d, each connected component of Γ_ĉ represents S^{d-1} (resp. is a gem of a closed (d − 1)-manifold).

글 🖌 🔺 글 🕨 👘

PROPERTIES

- $K(\Gamma)$ is orientable iff Γ is bipartite
- for each c ∈ Δ_d, the c-labelled vertices of K(Γ) are in bijection with the connected components of Γ_ĉ = Γ_{Δ_d-{c}}. (ĉ-residues of Γ). For each ĉ-residue Ξ, K(Ξ) is PL isomorphic to Lk(v_c, K'(Γ)).
- |K(Γ)| is a d-manifold (rep. singular d-manifold) if and only if, for every c ∈ Δ_d, each connected component of Γ_ĉ represents S^{d-1} (resp. is a gem of a closed (d − 1)-manifold).



 $\Sigma(\mathbb{RP}^2)$ = the suspension over \mathbb{RP}^2

A B M A B M

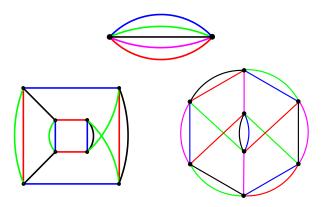
Existence Theorem (Pezzana, Casali - C. - Grasselli)

Any orientable (resp. non-orientable) singular manifold N^d admits a bipartite (resp. non-bipartite) (d + 1)-colored graph (Γ, γ) representing it. Moreover, (Γ, γ) can always be supposed to be contracted, i.e. for each color $c \in \Delta_d$, either $K(\Gamma)$ has only one *c*-colored vertex or all *c*-colored vertices of $K(\Gamma)$ are singular.

In the case of a (closed) manifold the pseudocomplex has exactly d + 1 vertices. The corresponding graph is called a crystallization of $|K(\Gamma)|$.

医下颌 医下颌

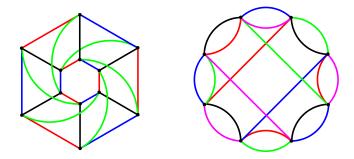
Examples



Contracted gem of $\mathbb{S}^4, \mathbb{S}^2 \widetilde{\times} \mathbb{S}^1$ and \mathbb{CP}^2

< ロ > < 回 > < 回 > < 回 > < 回 > <

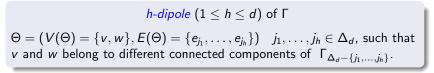
Examples

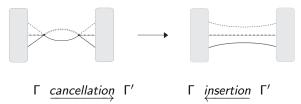


Contracted graphs representing L(3,1) (left) and $\mathbb{S}^2\times\mathbb{D}^2$ (right)

< 口 > < 四 > < 臣 > < 臣 > -

Dipole moves





An *h*-dipole Θ is called *proper* if and only if $|K(\Gamma)|$ and $|K(\Gamma')|$ are PL-isomorphic.

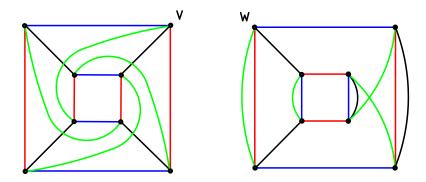
Proper dipoles

Gagliardi, 1987

Let Θ be an *h*-dipole of an (d + 1)-colored graph (Γ, γ) . If at least one of the connected components of $\Gamma_{\Delta_d - \{j_1, \dots, j_h\}}$ containing ν or w represents a PL (d - h)-sphere then Θ is proper. As a consequence, any dipole of a gem of a closed PL manifold is proper.

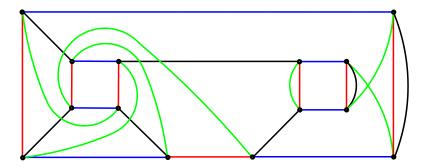
글 🖌 🔺 글 🕨

Graph connected sum: $\mathbb{RP}^3 \# \mathbb{S}^2 \widetilde{\times} \mathbb{S}^1$



<ロ> <回> <回> <回> < 回> < 回> < 回</p>

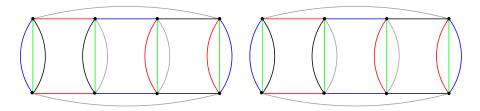
Graph connected sum: $\mathbb{RP}^3 \# \mathbb{S}^2 \widetilde{\times} \mathbb{S}^1$



イロト イヨト イヨト イヨト

$$\mathbb{Y}_1^4=\mathbb{S}^1 imes\mathbb{D}^3$$

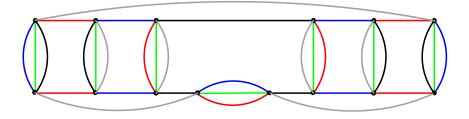
Genus one 4-dimensional orientable handlebodies



イロン イロン イヨン イヨン

Connected sums I

 \mathbb{Y}_2^4 as boundary connected sum

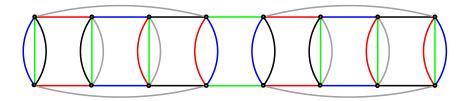


イロン イ団 と イヨン イヨン

æ

Connected sums II

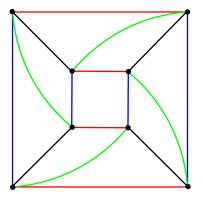
The connected sum $\mathbb{Y}_1^4 \# \mathbb{Y}_1^4$



イロン イ団 と イヨン イヨン

Suspension and product: $N^d = \Sigma(M^{d-1}), \quad \check{N}^d = M^{d-1} \times I$

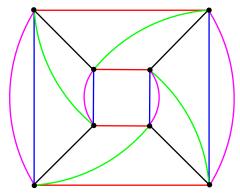
$$M^3 = \mathbb{RP}^3$$



<回>< E> < E> < E> < E

Suspension and product: $N^d = \Sigma(M^{d-1})$, $\check{N}^d = M^{d-1} \times I$

$$\check{N}^4 = \mathbb{RP}^3 \times I$$



<回>< E> < E> < E> < E

Regular embeddings (jackets)

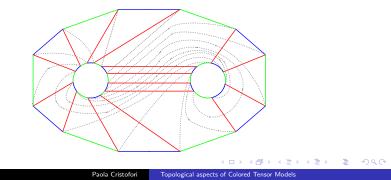
A cellular embedding $\phi : |\Gamma| \to F$ of a (d + 1)-colored graph (Γ, γ) into a (closed) surface F is called a regular embedding if there exists a cyclic permutation $\varepsilon = (\varepsilon_0, \ldots, \varepsilon_d)$ of Δ_d s.t. each connected component of $F - \phi(|\Gamma|)$ is an open ball bounded by the image of an $\{\varepsilon_i, \varepsilon_{i+1}\}$ -colored cycle of Γ ($\forall i \in \mathbb{Z}_d$).

A B M A B M

Regular embeddings (jackets)

A cellular embedding $\phi : |\Gamma| \to F$ of a (d + 1)-colored graph (Γ, γ) into a (closed) surface F is called a regular embedding if there exists a cyclic permutation $\varepsilon = (\varepsilon_0, \ldots, \varepsilon_d)$ of Δ_d s.t. each connected component of $F - \phi(|\Gamma|)$ is an open ball bounded by the image of an $\{\varepsilon_i, \varepsilon_{i+1}\}$ -colored cycle of Γ ($\forall i \in \mathbb{Z}_d$).

EXAMPLE: Regular embedding corresponding to $\varepsilon = (\text{green}, \text{ red}, \text{ blue}, \text{grey})$



The regular genus

Gagliardi, 1981

For each (d + 1)-colored graph (Γ, γ) and for every cyclic permutation ε of Δ_d , there exists a *regular embedding* of Γ onto a suitable surface F_{ε} . Moreover:

- F_{ε} is orientable if and only if Γ is bipartite;
- ε and ε^{-1} induce the same embedding.

Definition

The regular genus $\rho_{\epsilon}(\Gamma)$ of Γ with respect to ε is the classical genus (resp. half of the genus) of the orientable (resp. non-orientable) surface F_{ε} :

$$\sum_{i\in\mathbb{Z}_{d+1}}g_{\varepsilon_i\varepsilon_{i+1}}+(1-d)p=2-2\rho_{\varepsilon}(\Gamma)$$

(E)



イロン イ団 と イヨン イヨン

æ –

Regular embeddings and Gurau degree

Regular genus of Γ

 $\rho(\Gamma) = \min \left\{ \rho_{\varepsilon}(\Gamma) \ / \ \varepsilon \text{ cyclic permutation of } \Delta_d \right\}$

Gurau degree

Given a (d + 1)-colored graph (Γ, γ) , then

$$\omega_G(\Gamma) = \sum_{i=1}^{\frac{d!}{2}} \rho_{\varepsilon^{(i)}}(\Gamma)$$

where the $\varepsilon^{(i)}$'s are the cyclic permutations of Δ_d up to inverse. Hence,

$$\omega_{G}(\Gamma) \geq \frac{d!}{2}\rho(\Gamma)$$

PL invariants

Definition

• regular genus of a singular d-manifold N^d :

$$\mathcal{G}(N^d) = \min \{ \rho(\Gamma) \mid (\Gamma, \gamma) \text{ represents } N^d \}$$

• Gurau degree (G-degree) of a singular d-manifold N^d :

$$\mathcal{D}_{G}(N^{d}) = \min \{ \omega_{G}(\Gamma) \mid (\Gamma, \gamma) \text{ represents } N^{d} \}$$

Remark: The minimum is always realized by a contracted graph.

$$\mathcal{D}_{G}(\Gamma) \geq rac{d!}{2}\mathcal{G}(\Gamma)$$

Problems and questions

determine properties of the G-degree for graphs and/or pseudomanifolds

글 🖌 🔺 글 🕨

Problems and questions

- determine properties of the G-degree for graphs and/or pseudomanifolds
- TOP and/or PL classification of $N^d = |K(\Gamma)|$ according to $\omega_G(\Gamma)$ and $\mathcal{D}_G(N^d)$

Problems and questions

- determine properties of the G-degree for graphs and/or pseudomanifolds
- TOP and/or PL classification of $N^d = |K(\Gamma)|$ according to $\omega_G(\Gamma)$ and $\mathcal{D}_G(N^d)$
- determine topological/geometric/combinatorial properties of $\mathcal{K}(\Gamma)$ from $\omega_G(\Gamma)$

Problems and questions

- determine properties of the G-degree for graphs and/or pseudomanifolds
- TOP and/or PL classification of $N^d = |K(\Gamma)|$ according to $\omega_G(\Gamma)$ and $\mathcal{D}_G(N^d)$
- determine topological/geometric/combinatorial properties of $K(\Gamma)$ from $\omega_G(\Gamma)$
- find relations of $\mathcal{D}_{\textit{G}}$ with other PL invariants computed on colored graphs

Problems and questions

- determine properties of the G-degree for graphs and/or pseudomanifolds
- TOP and/or PL classification of $N^d = |K(\Gamma)|$ according to $\omega_G(\Gamma)$ and $\mathcal{D}_G(N^d)$
- determine topological/geometric/combinatorial properties of $K(\Gamma)$ from $\omega_G(\Gamma)$
- find relations of $\mathcal{D}_{\textit{G}}$ with other PL invariants computed on colored graphs
- in the $\frac{1}{N}$ -expansion:

Problems and questions

- determine properties of the G-degree for graphs and/or pseudomanifolds
- TOP and/or PL classification of $N^d = |K(\Gamma)|$ according to $\omega_G(\Gamma)$ and $\mathcal{D}_G(N^d)$
- determine topological/geometric/combinatorial properties of $K(\Gamma)$ from $\omega_G(\Gamma)$
- \bullet find relations of \mathcal{D}_{G} with other PL invariants computed on colored graphs
- in the $\frac{1}{N}$ -expansion:
 - $\star\,$ which terms of the sequence do actually appear ?
 - \star which kind of exponents correspond to closed/singular manifolds ?
 - * which (classes of) pseudomanifolds do actually appear in certain terms of the sequence ?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Which terms do appear in the $\frac{1}{N}$ -expansion ?

Casali - Grasselli, 2018

For d even and $d \ge 4$, if Γ is bipartite or Γ represents a singular d-manifold, then

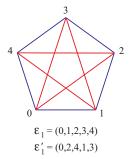
 $\omega_G(\Gamma) \equiv 0 \mod (d-1)!$

Consequences: In the case of *d* even and $d \ge 4$, the only non-null terms of the $\frac{1}{N}$ -expansion are the ones corresponding to even (integer) powers of $\frac{1}{N}$.

A B M A B M

Hint of proof:

cyclic permutation of $\Delta_d \iff$ Hamiltonian cycle of K_{d+1}



Example: two Hamiltonian cycles of K_5 and their associated cyclic permutations

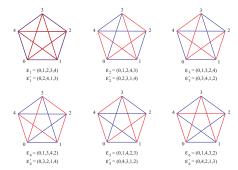
* E * * E *

э

4 A I

Bryant - Horsley - Maenhaut - Smith, 2011

For all odd $n \ge 3$ there exists a partition of all Hamiltonian cycles of K_n (the complete graph with n vertices) into (n-2)! Hamiltonian cycle decompositions of K_n .



Example: the six Hamiltonian cycle decompositions of K_5

・ 同 ト ・ ヨ ト ・ ヨ ト

Consequence: The number of bicolored cycles of Γ can be computed by using only the permutations belonging to one class.

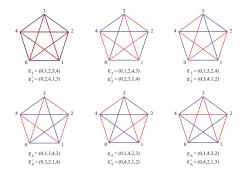
$$\omega_G(\Gamma) = (d-1)! \cdot \sum_{i=1}^{d/2} \rho_{\tilde{\varepsilon}^{(i)}}(\Gamma)$$

where $\bar{\varepsilon}^{(1)}, \bar{\varepsilon}^{(2)}, \dots, \bar{\varepsilon}^{(\frac{d}{2})}$ form one of the partition classes of the cyclic permutations of Δ_d

Remark: If *d* is odd, the sum $\sum_{i=1}^{d/2} \rho_{\bar{\varepsilon}^{(i)}}$ is still constant on each class and it is $\frac{2}{(d-1)!} \omega_G(\Gamma)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Dimension 4



For any 5-colored graph Γ ,

```
\omega_{G}(\Gamma) = 6(\rho_{\varepsilon}(\Gamma) + \rho_{\varepsilon'}(\Gamma))
```

for each pair of associated permutations ε and ε' .

* 注 * * 注 *

< 🗇 🕨

First terms of the $\frac{1}{N}$ -expansion

Casali - C. - Dartois - Grasselli, 2018

 (Γ, γ) any bipartite (d + 1)-colored graph.

$$\omega_{G}(\Gamma) < \frac{d!}{2} \implies |K(\Gamma)| \cong_{PL} \mathbb{S}^{d}$$

Consequences: In the $\frac{1}{N}$ -expansion the terms with exponents > -d count only graphs representing \mathbb{S}^d

The non-bipartite case

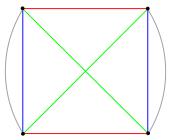
Casali - C. - Dartois - Grasselli, 2018

For $d \geq 3$, no non-bipartite (d + 1)-colored graph (Γ, γ) exists with $\omega_G(\Gamma) < \lceil \frac{d!}{4} \rceil$.

Moreover, for each $d \ge 4$ no colored graph representing a singular d-manifold exists with G-degree $< \lceil \frac{d!}{2} \rceil$.

Remark: For d = 3 the bound is sharp.

Example: Γ representing $\Sigma(\mathbb{RP}^2)$ with $\omega_G(\Gamma) = 2$

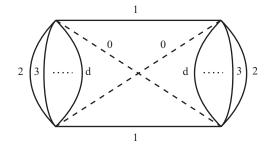


< 注入 < 注入 :

3

- (B)

Generalization: Γ representing $\Sigma^{(d-2)}(\mathbb{RP}^2)$ with $\omega_G(\Gamma) = \frac{(d-1)!}{2}(d-1)$



→ < ∃ →</p>

The non-bipartite case

Bonzom - Lionni - Tanasa, 2018

For $d \ge 3$, no non-bipartite (d + 1)-colored graph (Γ, γ) exists with $\omega_{\mathcal{G}}(\Gamma) < \frac{(d-1)!(d-1)}{2}$.

A B M A B M

Finiteness property

Casali - C. - Grasselli, 2018

For each pair of fixed integers $\bar{S} \ge 0$ and $\bar{R} \ge d+1$, only a finite number of (d+1)-colored graphs (Γ, γ) exists, with $\omega_G(\Gamma) = \bar{S}$ and $\sum_{i \in \Delta_d} g_i^2 = \bar{R}$.

Hence, the G-degree \mathcal{D}_G is finite-to-one within the set all singular d-manifolds with $h \ge 0$ singular vertices (in particular within the set of closed manifolds).

Dimension 3

The gem-complexity of a singular *d*-manifold N^d is

 $k(N^d)=p-1$

where 2p = minimum order of a (d+1)-colored graph representing N^d

Casali - C. - Dartois - Grasselli, 2018

• For any 4-colored graph (Γ, γ) of order 2*p*:

$$\omega_G(\Gamma) = p - 1 - \sum_{i \in \Delta_3} (g_i - 1) + \chi(K(\Gamma))$$

• For any closed 3-manifold M

$$\mathcal{D}_G(M)=k(M)$$

(人間) とくまと くまと

Casali - C. - Grasselli 2018

For each singular 3-manifold N^3 with only one singular point,

 $\mathcal{D}_G(N^3) = k(N^3) + g(\partial \check{N}^3)$

Conjecture

Let N^3 be a singular 3-manifold and let $\partial \check{N}_1, \ldots, \partial \check{N}_h$ be the boundary components of \check{N}^3 . Then:

$$\mathcal{D}_G(N^3) = k(N^3) + \sum_{i=1}^h g(\partial \check{N}_i)$$

Notation: $S = \text{closed surface}, g(S) = \begin{cases} genus(S) & \text{if } S \text{ is orientable} \\ \frac{1}{2}genus(S) & \text{if } S \text{ is non-orientable} \end{cases}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Classification according to \mathcal{D}_{G}

For prime, handle-free orientable (resp. non-orientable) closed 3-manifolds the classification is complete up to

 $\mathcal{D}_G(M) = 15$ (resp. $\mathcal{D}_G(M) = 14$)

글 🖌 🔺 글 🛌

Classification according to \mathcal{D}_{G}

For prime, handle-free orientable (resp. non-orientable) closed 3-manifolds the classification is complete up to

 $\mathcal{D}_G(M) = 15$ (resp. $\mathcal{D}_G(M) = 14$)

Let M be a closed, orientable, prime 3-manifold, then,

- $\mathcal{D}_{\mathcal{G}}(M) \leq 10 \Rightarrow M \cong \mathbb{S}^2 \times \mathbb{S}^1$ or it is spherical
- $\mathcal{D}_G(M) \leq 13 \Rightarrow M$ is not hyperbolic $(\mathcal{D}_G(M) \leq 11)$ $\Rightarrow M \cong \mathbb{S}^2 \times \mathbb{S}^1$ or M is flat or spherical)
- The Matveev-Fomenko-Weeks manifold has G-degree = 14

< 同 > < 三 > < 三 > 、

Classification according to ω_G (bipartite case)

Casali - C. - Dartois - Grasselli 2018; Casali - C. - Grasselli 2018

Let (Γ, γ) be a bipartite 4-colored graph and $N^3 = |\mathcal{K}(\Gamma)|$, then

$$\begin{split} \omega_{G}(\Gamma) &\leq 2 &\implies N^{3} \cong \mathbb{S}^{3} \\ \omega_{G}(\Gamma) &= 3 &\implies \check{N}^{3} \cong \mathbb{Y}_{1}^{3} \\ \omega_{G}(\Gamma) &\in \{4,5\} &\implies \text{either } N^{3} \cong \mathbb{S}^{3}, \mathbb{S}^{2} \times \mathbb{S}^{1}, \mathbb{RP}^{3}, \mathcal{L}(3,1) \\ & \text{or } & \check{N}^{3} \cong \mathbb{Y}_{1}^{3}, \ \mathbb{T}^{2} \times I \\ \omega_{G}(\Gamma) &= 6 &\implies \text{either } N^{3} \cong \mathbb{S}^{3}, \mathbb{S}^{2} \times \mathbb{S}^{1}, \mathbb{RP}^{3}, \mathcal{L}(3,1), \mathbb{RP}^{3} \# \mathbb{RP}^{3} \\ & \text{or } & \check{N}^{3} \cong \mathbb{Y}_{1}^{3}, \ \mathbb{T}^{2} \times I, \ \mathbb{D}_{2}^{2} \times \mathbb{S}^{1}, \ \mathbb{Y}_{1}^{3} \# \mathbb{Y}_{1}^{3}, \ M_{S}, \\ & (\mathbb{S}^{1} \times \mathbb{S}^{2}) \# \mathbb{Y}_{1}^{3}, \ \mathbb{RP}^{3} \# \mathbb{Y}_{1}^{3}, \ \mathbb{Y}_{2}^{3} \end{split}$$

 $\mathbb{Y}_{g}^{d} = d$ -dimensional orientable genus g handlebody $\mathbb{T}^{2} =$ torus, $\mathbb{D}_{2}^{2} =$ disk with two holes $M_{S} =$ Seifert manifold with base \mathbb{D}^{2} and Seifert parameters ((2,1), (2,1))

Classification in dimension 3 and 4

n=3

- TOP=PL (any topological 3-manifold admits a PL-structure which is unique up to PL-isomorphisms)
- PL=DIFF (each PL-structure on a 3-manifold is smoothable in a unique way up to diffeomorphisms)

n=4

- PL=DIFF
- TOP≠PL
 - there are topological 4-manifolds admitting no PL structure;
 - there can be infinitely many non-equivalent PL structures on the same topological 4-manifold.

・ 同 ト ・ ヨ ト ・ ヨ ト …

[Akhmedov-Doug Park, 2010], [Akhmedov-Ishida-Doug Park, 2013]

There exist (infinitely many) non-equivalent PL structures on:

• $\#_{2h-1}\mathbb{CP}^2 \#_{2h}\overline{\mathbb{CP}^2}$, for any integer $h \ge 1$

•
$$\#_{2h-1}(\mathbb{S}^2 \times \mathbb{S}^2)$$
, for $h \ge 138$

•
$$\#_{2h-1}(\mathbb{CP}^2 \# \overline{\mathbb{CP}^2})$$
, for $h \ge 23$

#_{2p}(S² × S²) and #_{2p}(CP² # CP²), for large enough integers p not divisible by 4.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Dimension 4

Casali - C. - Dartois - Grasselli, 2018

 For any 5-colored graph (Γ, γ) of order 2p such that |K(Γ)| is a singular 4-manifold:

$$\omega_G(\Gamma) = 6(p-1-\sum_{i\in\Delta_4}(g_{\hat{i}}-1)+\chi(K(\Gamma))-2)$$

• For any closed 4-manifold M:

$$\mathcal{D}_G(M) = 6(k(M) + \chi(M) - 2)$$

くぼう くほう くほう

Dimension 4

Casali - C. - Dartois - Grasselli, 2018

 For any 5-colored graph (Γ, γ) of order 2p representing a singular 4-manifold:

$$\omega_G(\Gamma) = 6(p-1-\sum_{i\in\Delta_4}(g_{\hat{i}}-1)+\chi(\mathcal{K}(\Gamma))-2)$$

• For any closed 4-manifold M:

$$\mathcal{D}_G(M) = 6(\underbrace{k(M)}_{\mathsf{PL}} + \underbrace{\chi(M)}_{\mathsf{TOP}} - 2)$$

くぼう くほう くほう

Effective computation of \mathcal{D}_{G}

Casali - C. - Dartois - Grasselli, 2018

If M is PL-homeomorphic to

 $(\#_{\rho}\mathbb{CP}^{2})\#(\#_{\rho'}(\overline{\mathbb{CP}^{2}}))\#(\#_{q}\mathbb{S}^{2}\times\mathbb{S}^{2})\#(\#_{r}\mathbb{S}^{3}\otimes\mathbb{S}^{1})\#(\#_{s}\mathbb{RP}^{4})\#(\#_{t}K3)$

with $p, p', q, r, s, t \ge 0$. Then,

$$\mathcal{D}_G(M) = 12 \cdot [2(p+p'+2q+22t)+r+3s]$$

 $\mathbb{S}^3 \otimes \mathbb{S}^1 = \text{ orientable or nonorientable } \mathbb{S}^3 \text{-bundle over } \mathbb{S}^1$

It is always realized by simple/semisimple contracted graphs

(四) (モート (日))

3

TOP classification

Casali - C. - Dartois - Grasselli, 2018

Let (Γ, γ) be a gem of a simply-connected closed PL 4-manifold M. If $\omega_G(\Gamma) \leq 527$, then M is TOP-homeomorphic to

$(\#_r \mathbb{CP}^2) \# (\#_{r'}(\overline{\mathbb{CP}^2}))$ or $\#_s(\mathbb{S}^2 \times \mathbb{S}^2)$

where $r + r' = \beta_2(M)$ and $s = \frac{1}{2}\beta_2(M)$, with $\beta_2(M) \le \frac{1}{24} \cdot \omega_G(\Gamma)$

同 ト イヨ ト イヨ ト 二 ヨ

PL classification

Casali - C. - Dartois - Grasselli 2018, Casali preprint

If (Γ, γ) is a 5-colored graph representing a singular 4-manifold N^4 , then: $\omega_G(\Gamma) \in \{0, 6\} \implies N^4 \cong \mathbb{S}^4$ $\omega_G(\Gamma) = 12 \implies \text{either } N^4 \in \{\mathbb{S}^4 \ \mathbb{S}^3 \times \mathbb{S}^1 \ \mathbb{S}^3 \tilde{\mathbb{X}} \mathbb{S}^1\}$

$$\omega_G(\mathsf{I}) = 12 \quad \Longrightarrow \text{ either } N^* \in \{\mathbb{S}^*, \ \mathbb{S}^3 \times \mathbb{S}^1, \ \mathbb{S}^3 \times \mathbb{S}^1\}$$
$$\text{or } \check{N}^4 \in \{\mathbb{Y}_1^4, \ \tilde{\mathbb{Y}}_1^4\}$$

$$\begin{split} \omega_{\mathcal{G}}(\Gamma) &= 18 & \Longrightarrow \text{ either } \mathsf{N}^4 \in \{\mathbb{S}^4, \ \mathbb{S}^3 \times \mathbb{S}^1, \ \mathbb{S}^3 \tilde{\times} \mathbb{S}^1\} \\ & \text{ or } \quad \check{\mathsf{N}}^4 \in \{\mathbb{Y}_1^4, \ \tilde{\mathbb{Y}}_1^4, \ \mathbb{R}\mathbb{P}^3 \times I, \ (\mathbb{S}^1 \times \mathbb{S}^2) \times I, \\ & (\mathbb{S}^1 \tilde{\times} \mathbb{S}^2) \times I\} \end{split}$$

伺 ト イヨ ト イヨ ト

PL classification

Moreover, if Γ has exactly one singular color and $\omega_G(\Gamma) = 24$. then:

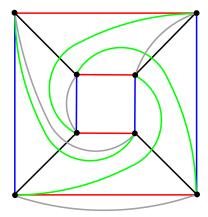
$$either \qquad N^4 \in \{\mathbb{S}^4, \ \mathbb{S}^3 \times \mathbb{S}^1, \ \mathbb{S}^3 \tilde{\times} \mathbb{S}^1, \ \#_2(\mathbb{S}^1 \times \mathbb{S}^3), \ \#_2(\mathbb{S}^1 \tilde{\times} \mathbb{S}^3), \ \mathbb{CP}^2\}$$

$$\begin{split} \text{or} \qquad \check{N}^4 \in \{ \mathbb{Y}_1^4, \ \tilde{\mathbb{Y}}_1^4, \ \mathbb{Y}_1^4 \# \mathbb{Y}_1^4, \ \tilde{\mathbb{Y}}_1^4 \# \tilde{\mathbb{Y}}_1^4, \ \mathbb{Y}_2^4, \ \mathbb{Y}_2^4, \ \mathbb{Y}_1^4 \# (\mathbb{S}^1 \times \mathbb{S}^3), \\ \qquad \quad \tilde{\mathbb{Y}}_1^4 \# (\mathbb{S}^1 \times \mathbb{S}^3), \ \mathbb{S}^2 \times \mathbb{D}^2, \ \xi_2 \} \end{split}$$

 $\xi_2 = \mathbb{D}^2$ -bundle over \mathbb{S}^2 with Euler number 2

A B M A B M

3



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

PL classification according to \mathcal{D}_{G}

Casali - C. - Dartois - Grasselli 2018, Casali preprint

Let N^4 be a singular 4-manifold. Then:

$$\begin{aligned} \mathcal{D}_{G}(N^{4}) &= 0 & \iff N^{4} \cong \mathbb{S}^{4} \\ \mathcal{D}_{G}(N^{4}) &= 12 & \iff \text{either } N^{4} \in \{\mathbb{S}^{3} \times \mathbb{S}^{1}, \ \mathbb{S}^{3} \tilde{\times} \mathbb{S}^{1}\} \\ & \text{or } \quad \check{N}^{4} \in \{\mathbb{Y}_{1}^{4}, \ \tilde{\mathbb{Y}}_{1}^{4}\} \\ \mathcal{D}_{G}(N^{4}) &= 18 & \iff \check{N}^{4} \in \{L(2,1) \times I, \ (\mathbb{S}^{1} \times \mathbb{S}^{2}) \times I, \ (\mathbb{S}^{1} \tilde{\times} \mathbb{S}^{2}) \times I\} \end{aligned}$$

If N^4 has at most one singular vertex, then:

$$\begin{aligned} \mathcal{D}_{G}(N^{4}) &= 24 \quad \Longleftrightarrow \text{ either } N^{4} \in \{ \#_{2}(\mathbb{S}^{1} \times \mathbb{S}^{3}), \ \#_{2}(\mathbb{S}^{1} \tilde{\times} \mathbb{S}^{3}), \ \mathbb{CP}^{2} \} \\ & \text{ or } \check{N}^{4} \in \{ \mathbb{Y}_{2}^{4}, \ \tilde{\mathbb{Y}}_{2}^{4}, \ \mathbb{Y}_{1}^{4} \# (\mathbb{S}^{1} \times \mathbb{S}^{3}), \\ & \tilde{\mathbb{Y}}_{1}^{4} \# (\mathbb{S}^{1} \times \mathbb{S}^{3}), \ \mathbb{S}^{2} \times \mathbb{D}^{2}, \ \xi_{2} \} \end{aligned}$$

.∋...>

If N^4 is a closed simply-connected 4-manifold, then

$$\mathcal{D}_G(M) = 48 \quad \Longleftrightarrow \quad M \cong \mathbb{S}^2 \times \mathbb{S}^2, \mathbb{CP}^2 \# \mathbb{CP}^2, \mathbb{CP}^2 \# \overline{\mathbb{CP}^2}^2$$

and no other closed simply-connected PL 4-manifold exists with G-degree \leq 59.

▶ < ∃ ▶</p>

HINT OF PROOFS:

In all these cases $K(\Gamma)$ may be assumed to have d + 1 vertices. If (Γ, γ) is such a graph, N^4 is a closed manifold and $\{r, s, t\} \cup \{i, j\} = \Delta_5$:

$$N^{4} = \underbrace{\mathbb{D}^{4} \cup (H_{1}^{(1)} \cup \dots \cup H_{r_{1}}^{(1)}) \cup (H_{1}^{(2)} \cup \dots \cup H_{r_{2}}^{(2)})}_{N(r,s,t)} \cup \underbrace{(H_{1}^{(3)} \cup \dots \cup H_{r_{3}}^{(3)}) \cup H^{(4)}}_{N(i,j)}$$

where:

- N(r, s, t) = regular neighborhood of the subcomplex of K(Γ) generated by vertices labelled by {r, s, t} (union of 0,1,2-handles)
- N(i, j) = regular neighborhood of the subcomplex of K(Γ) generated by vertices labelled by {i, j} (union of 3,4-handles)

・ 同 ト ・ ヨ ト ・ ヨ ト …

HINT OF PROOFS:

• no 2-handles $\Rightarrow N^4 \cong \#_m(\mathbb{S}^1 \times \mathbb{S}^3)$ (via [Montesinos, 1979])

イロン イ団 と イヨン イヨン

Ξ.

HINT OF PROOFS:

- no 2-handles $\Rightarrow N^4 \cong \#_m(\mathbb{S}^1 \times \mathbb{S}^3)$ (via [Montesinos, 1979])
- one 2-handle and $\partial N(r, s, t) \cong \mathbb{S}^3 \implies N^4 \cong \mathbb{CP}^2$ (via [Gordon-Luecke, 1989], ensuring $(K, d) = (K_0, 0)$)
- one 2-handle and $\partial N(r, s, t) \cong \mathbb{S}^2 \times \mathbb{S}^1 \implies \check{N}^4 \cong \mathbb{S}^2 \times \mathbb{D}^2$ (via [Gabai, 1987], ensuring $(K, d) = (K_0, 1)$)

• one 2-handle and $\partial N(r, s, t) \cong \mathbb{RP}^3 \Rightarrow \check{N}^4 \cong \xi_2$ (via [Kronheimer-Mrowka-Ozsvath-Szabo, 2007], ensuring $(K, d) = (K_0, 2)$)

э.

Additivity of G-degree

$$\begin{split} \mathcal{D}_{G} \text{ is additive on connected sums of} \\ \mathbb{S}^{4}, \ \mathbb{CP}^{2}, \ \mathbb{S}^{2} \times \mathbb{S}^{2}, \ \mathbb{S}^{3} \times \mathbb{S}^{1}, \ \mathbb{S}^{3} \widetilde{\times} \mathbb{S}^{1}, \ \mathbb{RP}^{4}, \ \textit{K3} \end{split}$$

Paola Cristofori Topological aspects of Colored Tensor Models

Additivity of G-degree

 \mathcal{D}_{G} is additive on connected sums of

 $\mathbb{S}^4, \ \mathbb{CP}^2, \ \mathbb{S}^2 \times \mathbb{S}^2, \ \mathbb{S}^3 \times \mathbb{S}^1, \ \mathbb{S}^3 \widetilde{\times} \mathbb{S}^1, \ \mathbb{RP}^4, \ \textit{K3}$

Exotic structures and \mathcal{D}_{G}

 \mathcal{D}_G does not satisfy the additivity property, within the set of closed PL 4-manifolds.

Example: let *N* and *N'* be two of the infinitely many different PL manifolds homeomorphic to $\mathbb{CP}^2 \# (\#_2(-\mathbb{CP}^2))$.

By Wall theorem and additivity: $\mathcal{D}_G(N) = \mathcal{D}_G(N') \implies$ impossible by finiteness property of \mathcal{D}_G .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

THANK YOU

Paola Cristofori Topological aspects of Colored Tensor Models

イロン イヨン イヨン イヨン

2