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(d + 1)-colored graphs

(d + 1)-colored graph (Γ, γ)

Γ = (V (Γ),E (Γ)) regular graph of degree d + 1,

γ : E (Γ)→ ∆d = {0, . . . , d} such that γ(e) 6= γ(f ) for each pair of
adjacent edges e, f ∈ E (Γ) (edge-coloration)

graph = multigraph (multiple edges allowed, loops forbidden)
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Tensor invariants encoded by d-colored graphs

White (black) vertices for T (T )

Edges colored by the position of the index

Example:

Q(T ,T ) =
∑N

i1,...,id=1
j1,...,jd=1

T i1,i2,...,idTj1,i2,...,idT j1,j2,...,jdTi1,j2,...,jd
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〈Q(T ,T )〉 =
N∑

{in,jn,ln,kn=1}1≤n≤d

δi1k1δj1l1

(
d∏

p=2

δip jp

)(
d∏

q=2

δlqkq

)
(
〈T i1...idTj1...jd 〉〈T l1...ldTk1...kd 〉+ 〈T i1...idTk1...kd 〉〈T l1...ldTj1...jd 〉

)
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Colored Tensor Models (CTM)

A (d + 1)-dimensional Colored Tensor Model is a formal partition
function defined by a formal integral:

Z[N, {tB}B∈CG(d)] :=

∫
f

dTdT

(2π)Nd e
−Nd−1T ·T+

∑
B αBB(T ,T )

where

- T ,T ∈ ⊗dCN

- CG(d) is the set of bipartite d-colored graphs

- B(T ,T ) invariant encoded by a d-colored graph B ∈ CG(d)
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G-degree (R. Gurau)

If (Γ, γ) is a (d + 1)-colored graph of order 2p, set:

ωG (Γ) =
(d − 1)!

2

(
d +

d

2
(d − 1)p −

∑
r ,s∈∆d

grs
)

grs = number of {r , s}-colored cycles of Γ
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Theorem (Bonzom-Gurau)

If αB = Nd−1− 2
(d−2)!ωG (B) tB

|Aut(B)|

the free energy 1
Nd logZ[N, {tB}] is∑

ωG≥0

N−
2

(d−1)!ωGFωG
[{tB}] ∈ C[[N−1, {tB}]] (

1

N
expansion)

where the coefficients FωG
[{tB}] are generating functions of connected

(d + 1)-colored graphs with fixed Gurau degree ωG
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The pseudocomplex K (Γ)

1) take a d-simplex σ(x) for every vertex x ∈ V (Γ), and label its
vertices by ∆d ;

2) if x , y ∈ V (Γ) are joined by a c-colored edge, identify the
(d − 1)-faces of σ(x) and σ(y) opposite to c-labelled vertices, so
that equally labelled vertices coincide.
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? K (Γ) is a (closed) d-pseudomanifold

? (Γ, γ) represents |K (Γ)|

? If Md = |K (Γ)| is a closed manifold, (Γ, γ) is called a gem =
“graph encoded manifold” of Md .

? Γ is the 1-skeleton of the dual complex of K (Γ)

Definition

A singular (PL) d-manifold (d > 1) is a compact connected
d-dimensional polyhedron admitting a simplicial triangulation where the
links of vertices are closed connected (d − 1)-manifolds, while the links of
all h-simplices with h > 0 are PL (d − h − 1)-spheres.
Vertices whose links are not PL (d − 1)-spheres are called singular.
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Singular manifolds/bounded manifolds

{(closed) manifolds} ⊂ {singular manifolds} ⊂ {pseudomanifolds}

From a singular d-manifold N to a d-manifold with boundary Ň
(by deleting regular neighbourhoods of singular vertices)

From a d-manifold M with boundary to a singular d-manifold M̂
(by capping off the boundary components with cones over them)
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PROPERTIES

K (Γ) is orientable iff Γ is bipartite

for each c ∈ ∆d , the c-labelled vertices of K (Γ) are in bijection with
the connected components of Γĉ = Γ∆d−{c}. (ĉ-residues of Γ).
For each ĉ-residue Ξ, K (Ξ) is PL isomorphic to Lk(vc ,K

′(Γ)).

|K (Γ)| is a d-manifold (rep. singular d-manifold) if and only if, for
every c ∈ ∆d , each connected component of Γĉ represents Sd−1

(resp. is a gem of a closed (d − 1)-manifold).

Σ(RP2) = the suspension over RP2
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Existence Theorem (Pezzana, Casali - C. - Grasselli)

Any orientable (resp. non-orientable) singular manifold Nd admits a
bipartite (resp. non-bipartite) (d + 1)-colored graph (Γ, γ) representing it.
Moreover, (Γ, γ) can always be supposed to be contracted, i.e. for each
color c ∈ ∆d , either K (Γ) has only one c-colored vertex or all c-colored
vertices of K (Γ) are singular.

In the case of a (closed ) manifold the pseudocomplex has exactly d + 1
vertices. The corresponding graph is called a crystallization of |K (Γ)|.
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Examples

Contracted gem of S4,S2×̃S1 and CP2
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Examples

Contracted graphs representing L(3, 1) (left) and S2 × D2 (right)
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Dipole moves

h-dipole (1 ≤ h ≤ d) of Γ

Θ = (V (Θ) = {v ,w},E (Θ) = {ej1 , . . . , ejh}) j1, . . . , jh ∈ ∆d , such that
v and w belong to different connected components of Γ∆d−{j1,...,jh}.

Γ cancellation−−−−−−−−→ Γ′ Γ insertion←−−−−− Γ′

An h-dipole Θ is called proper if and only if |K (Γ)| and |K (Γ′)| are
PL-isomorphic.
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Proper dipoles

Gagliardi, 1987

Let Θ be an h-dipole of an (d + 1)-colored graph (Γ, γ). If at least one of
the connected components of Γ∆d−{j1,...,jh} containing v or w represents
a PL (d − h)-sphere then Θ is proper. As a consequence, any dipole of a
gem of a closed PL manifold is proper.
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Graph connected sum: RP3#S2×̃S1
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Graph connected sum: RP3#S2×̃S1
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Y4
1 = S1 × D3

Genus one 4-dimensional orientable handlebodies
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Connected sums I

Y4
2 as boundary connected sum
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Connected sums II

The connected sum Y4
1#Y4

1
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Suspension and product: Nd = Σ(Md−1), Ňd = Md−1× I

M3 = RP3
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Suspension and product: Nd = Σ(Md−1), Ňd = Md−1× I

Ň4 = RP3 × I
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Regular embeddings (jackets)

A cellular embedding φ : |Γ| → F of a (d + 1)-colored graph (Γ, γ) into a
(closed) surface F is called a regular embedding if there exists a cyclic
permutation ε = (ε0, . . . , εd) of ∆d s.t. each connected component of
F − φ(|Γ|) is an open ball bounded by the image of an {εi , εi+1}−
colored cycle of Γ (∀i ∈ Zd).

EXAMPLE: Regular embedding corresponding to ε = (green, red, blue, grey)
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The regular genus

Gagliardi, 1981

For each (d + 1)-colored graph (Γ, γ) and for every cyclic permutation ε
of ∆d , there exists a regular embedding of Γ onto a suitable surface Fε.
Moreover:

- Fε is orientable if and only if Γ is bipartite;

- ε and ε−1 induce the same embedding.

Definition

The regular genus ρε(Γ) of Γ with respect to ε is the classical genus (resp.
half of the genus) of the orientable (resp. non-orientable) surface Fε :∑

i∈Zd+1

gεiεi+1 + (1− d)p = 2− 2ρε(Γ)
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α

Fα

3

β

β

A ββ

A α3

'

'

β

3

β'

α

ε = (β′, α, β, 3)
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Regular embeddings and Gurau degree

Regular genus of Γ

ρ(Γ) = min {ρε(Γ) / ε cyclic permutation of ∆d}

Gurau degree

Given a (d + 1)-colored graph (Γ, γ), then

ωG (Γ) =

d!
2∑

i=1

ρε(i) (Γ)

where the ε(i)’s are the cyclic permutations of ∆d up to inverse.
Hence,

ωG (Γ) ≥ d!

2
ρ(Γ)
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PL invariants

Definition

regular genus of a singular d-manifold Nd :

G(Nd) = min {ρ(Γ) | (Γ, γ) represents Nd}

Gurau degree (G-degree) of a singular d-manifold Nd :

DG (Nd) = min {ωG (Γ) | (Γ, γ) represents Nd}

Remark: The minimum is always realized by a contracted graph.

DG (Γ) ≥ d!

2
G(Γ)
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Problems and questions

determine properties of the G-degree for graphs and/or
pseudomanifolds

TOP and/or PL classification of Nd = |K (Γ)| according to ωG (Γ)
and DG (Nd)

determine topological/geometric/combinatorial properties of K (Γ)
from ωG (Γ)

find relations of DG with other PL invariants computed on colored
graphs

in the 1
N -expansion:

? which terms of the sequence do actually appear ?
? which kind of exponents correspond to closed/singular manifolds ?
? which (classes of) pseudomanifolds do actually appear in certain

terms of the sequence ?
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Which terms do appear in the 1
N -expansion ?

Casali - Grasselli, 2018

For d even and d ≥ 4, if Γ is bipartite or Γ represents a singular
d-manifold, then

ωG (Γ) ≡ 0 mod (d − 1)!

Consequences: In the case of d even and d ≥ 4, the only non-null terms
of the 1

N -expansion are the ones corresponding to even (integer) powers
of 1

N .
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Hint of proof:

Bijective correspondence

cyclic permutation of ∆d ←→ Hamiltonian cycle of Kd+1

ε1 = (0,1,2,3,4)
ε1 = (0,2,4,1,3)′

ε2 = (0,1,2,4,3)
ε2 = (0,2,3,1,4)′

ε3 = (0,1,3,2,4)
ε3 = (0,3,4,1,2)′

ε4 = (0,1,3,4,2)
ε4 = (0,3,2,1,4)′

ε 5 = (0,1,4,2,3)
ε 5 = (0,4,3,1,2)′

ε 6 = (0,1,4,3,2)
ε 6 = (0,4,2,1,3)′

3

24

0 1

3

24

0 1

3

24

0 1

3

24

0 1

3

24

0 1

3

24

0 1

Example: two Hamiltonian cycles of K5 and their associated cyclic permutations
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Bryant - Horsley - Maenhaut - Smith, 2011

For all odd n ≥ 3 there exists a partition of all Hamiltonian cycles of Kn

(the complete graph with n vertices) into (n − 2)! Hamiltonian cycle
decompositions of Kn.

ε1 = (0,1,2,3,4)
ε1 = (0,2,4,1,3)′

ε2 = (0,1,2,4,3)
ε2 = (0,2,3,1,4)′

ε3 = (0,1,3,2,4)
ε3 = (0,3,4,1,2)′

ε4 = (0,1,3,4,2)
ε4 = (0,3,2,1,4)′

ε 5 = (0,1,4,2,3)
ε 5 = (0,4,3,1,2)′

ε 6 = (0,1,4,3,2)
ε 6 = (0,4,2,1,3)′

3

24

0 1

3

24

0 1

3

24

0 1

3

24

0 1

3

24

0 1

3

24

0 1

Example: the six Hamiltonian cycle decompositions of K5
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Consequence: The number of bicolored cycles of Γ can be computed by
using only the permutations belonging to one class.

ωG (Γ) = (d − 1)! ·
d/2∑
i=1

ρε̄(i) (Γ)

where ε̄(1), ε̄(2), . . . , ε̄( d
2 ) form one of the partition classes of the cyclic

permutations of ∆d

Remark: If d is odd, the sum
∑d/2

i=1 ρε̄(i) is still constant on each class
and it is 2

(d−1)!ωG (Γ).
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Dimension 4

ε1 = (0,1,2,3,4)
ε1 = (0,2,4,1,3)′

ε2 = (0,1,2,4,3)
ε2 = (0,2,3,1,4)′

ε3 = (0,1,3,2,4)
ε3 = (0,3,4,1,2)′

ε4 = (0,1,3,4,2)
ε4 = (0,3,2,1,4)′

ε 5 = (0,1,4,2,3)
ε 5 = (0,4,3,1,2)′

ε 6 = (0,1,4,3,2)
ε 6 = (0,4,2,1,3)′

3

24

0 1

3

24

0 1

3

24

0 1

3

24

0 1

3

24

0 1

3

24

0 1

For any 5-colored graph Γ,

ωG (Γ) = 6(ρε(Γ) + ρε′(Γ))

for each pair of associated permutations ε and ε′.
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First terms of the 1
N -expansion

Casali - C. - Dartois - Grasselli, 2018

(Γ, γ) any bipartite (d + 1)-colored graph.

ωG (Γ) <
d!

2
=⇒ |K (Γ)| ∼=PL Sd

Consequences: In the 1
N -expansion the terms with exponents > −d count

only graphs representing Sd
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The non-bipartite case

Casali - C. - Dartois - Grasselli, 2018

For d ≥ 3, no non-bipartite (d + 1)-colored graph (Γ, γ) exists with
ωG (Γ) < d d!

4 e.

Moreover, for each d ≥ 4 no colored graph representing a singular
d-manifold exists with G-degree < d d!

2 e.
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Remark: For d = 3 the bound is sharp.

Example: Γ representing Σ(RP2) with ωG (Γ) = 2
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Generalization: Γ representing Σ(d−2)(RP2) with ωG (Γ) = (d−1)!
2 (d − 1)

1

1

d 22 d

0 0

33
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The non-bipartite case

Bonzom - Lionni - Tanasa, 2018

For d ≥ 3, no non-bipartite (d + 1)-colored graph (Γ, γ) exists with

ωG (Γ) < (d−1)!(d−1)
2 .
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Finiteness property

Casali - C. - Grasselli, 2018

For each pair of fixed integers S̄ ≥ 0 and R̄ ≥ d + 1, only a finite number
of (d + 1)-colored graphs (Γ, γ) exists, with ωG (Γ) = S̄ and∑

i∈∆d
gî = R̄.

Hence, the G-degree DG is finite-to-one within the set all singular
d-manifolds with h ≥ 0 singular vertices (in particular within the set of
closed manifolds).
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Dimension 3

The gem-complexity of a singular d-manifold Nd is

k(Nd) = p − 1

where 2p = minimum order of a (d + 1)-colored graph representing Nd

Casali - C. - Dartois - Grasselli, 2018

For any 4-colored graph (Γ, γ) of order 2p:

ωG (Γ) = p − 1−
∑
i∈∆3

(gî − 1) + χ(K (Γ))

For any closed 3-manifold M

DG (M) = k(M)
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Casali - C. - Grasselli 2018

For each singular 3-manifold N3 with only one singular point,

DG (N3) = k(N3) + g(∂Ň3)

Conjecture

Let N3 be a singular 3-manifold and let ∂Ň1, . . . , ∂Ňh be the boundary
components of Ň3. Then:

DG (N3) = k(N3) +
h∑

i=1

g(∂Ňi )

Notation: S = closed surface, g(S) =

{
genus(S) if S is orientable
1
2
genus(S) if S is non-orientable
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Classification according to DG

For prime, handle-free orientable (resp. non-orientable) closed
3-manifolds the classification is complete up to

DG (M) = 15 (resp. DG (M) = 14)

Let M be a closed, orientable, prime 3-manifold, then,

DG (M) ≤ 10 ⇒ M ∼= S2 × S1 or it is spherical

DG (M) ≤ 13 ⇒ M is not hyperbolic (DG (M) ≤ 11
⇒ M ∼= S2 × S1 or M is flat or spherical)

The Matveev-Fomenko-Weeks manifold has G-degree = 14
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Classification according to ωG (bipartite case)

Casali - C. - Dartois - Grasselli 2018; Casali - C. - Grasselli 2018

Let (Γ, γ) be a bipartite 4-colored graph and N3 = |K (Γ)|, then

ωG (Γ) ≤ 2 =⇒ N3 ∼= S3

ωG (Γ) = 3 =⇒ Ň3 ∼= Y3
1

ωG (Γ) ∈ {4, 5} =⇒ either N3 ∼= S3,S2 × S1,RP3, L(3, 1)

or Ň3 ∼= Y3
1, T2 × I

ωG (Γ) = 6 =⇒ either N3 ∼= S3,S2 × S1,RP3, L(3, 1),RP3#RP3

or Ň3 ∼= Y3
1, T2 × I , D2

2 × S1, Y3
1#Y3

1, MS ,

(S1 × S2)#Y3
1, RP

3#Y3
1, Y3

2

Yd
g = d-dimensional orientable genus g handlebody

T2 = torus, D2
2 = disk with two holes

MS = Seifert manifold with base D2 and Seifert parameters ((2, 1), (2, 1))
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Classification in dimension 3 and 4

n=3

TOP=PL (any topological 3-manifold admits a PL-structure which
is unique up to PL-isomorphisms)

PL=DIFF (each PL-structure on a 3-manifold is smoothable in a
unique way up to diffeomorphisms)

n=4

PL=DIFF

TOP6=PL

there are topological 4-manifolds admitting no PL structure;
there can be infinitely many non-equivalent PL structures on the
same topological 4-manifold.
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[Akhmedov-Doug Park, 2010], [Akhmedov-Ishida-Doug Park, 2013]

There exist (infinitely many) non-equivalent PL structures on:

#2h−1CP2#2hCP2, for any integer h ≥ 1

#2h−1(S2 × S2), for h ≥ 138

#2h−1(CP2#CP2), for h ≥ 23

#2p(S2 × S2) and #2p(CP2#CP2), for large enough integers p not
divisible by 4.
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Dimension 4

Casali - C. - Dartois - Grasselli, 2018

For any 5-colored graph (Γ, γ) of order 2p such that |K (Γ)| is a
singular 4-manifold:

ωG (Γ) = 6(p − 1−
∑
i∈∆4

(gî − 1) + χ(K (Γ))− 2)

For any closed 4-manifold M:

DG (M) = 6(k(M) + χ(M)− 2)
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Dimension 4

Casali - C. - Dartois - Grasselli, 2018

For any 5-colored graph (Γ, γ) of order 2p representing a singular
4-manifold:

ωG (Γ) = 6(p − 1−
∑
i∈∆4

(gî − 1) + χ(K (Γ))− 2)

For any closed 4-manifold M:

DG (M) = 6(k(M)︸ ︷︷ ︸
PL

+χ(M)︸ ︷︷ ︸
TOP

−2)
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Effective computation of DG

Casali - C. - Dartois - Grasselli, 2018

If M is PL-homeomorphic to

(#pCP2)#(#p′(CP2))#(#qS2 × S2)#(#rS3 ⊗ S1)#(#sRP4)#(#tK3)

with p, p′, q, r , s, t ≥ 0. Then,

DG (M) = 12 ·
[
2(p + p′ + 2q + 22t) + r + 3s

]

S3 ⊗ S1 = orientable or nonorientable S3-bundle over S1

It is always realized by simple/semisimple contracted graphs
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TOP classification

Casali - C. - Dartois - Grasselli, 2018

Let (Γ, γ) be a gem of a simply-connected closed PL 4-manifold M. If
ωG (Γ) ≤ 527, then M is TOP-homeomorphic to

(#rCP2)#(#r ′(CP2)) or #s(S2 × S2)

where r + r ′ = β2(M) and s = 1
2β2(M), with β2(M) ≤ 1

24 · ωG (Γ)
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PL classification

Casali - C. - Dartois - Grasselli 2018, Casali preprint

If (Γ, γ) is a 5-colored graph representing a singular 4-manifold N4, then:

ωG (Γ) ∈ {0, 6} =⇒ N4 ∼= S4

ωG (Γ) = 12 =⇒ either N4 ∈ {S4, S3 × S1, S3×̃S1}
or Ň4 ∈ {Y4

1, Ỹ4
1}

ωG (Γ) = 18 =⇒ either N4 ∈ {S4, S3 × S1, S3×̃S1}
or Ň4 ∈ {Y4

1, Ỹ4
1, RP

3 × I , (S1 × S2)× I ,

(S1×̃S2)× I}
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PL classification

Moreover, if Γ has exactly one singular color and ωG (Γ) = 24. then:

either N4 ∈ {S4, S3 × S1, S3×̃S1, #2(S1 × S3), #2(S1×̃S3), CP2}

or Ň4 ∈ {Y4
1, Ỹ4

1, Y4
1#Y4

1, Ỹ4
1#Ỹ4

1, Y4
2, Ỹ4

2, Y4
1#(S1 × S3),

Ỹ4
1#(S1 × S3), S2 × D2, ξ2}

ξ2 = D2-bundle over S2 with Euler number 2
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ξ2
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PL classification according to DG

Casali - C. - Dartois - Grasselli 2018, Casali preprint

Let N4 be a singular 4-manifold. Then:

DG (N4) = 0 ⇐⇒ N4 ∼= S4

DG (N4) = 12 ⇐⇒ either N4 ∈ {S3 × S1, S3×̃S1}
or Ň4 ∈ {Y4

1, Ỹ4
1}

DG (N4) = 18 ⇐⇒ Ň4 ∈ {L(2, 1)× I , (S1 × S2)× I , (S1×̃S2)× I}

If N4 has at most one singular vertex, then:

DG (N4) = 24 ⇐⇒ either N4 ∈ {#2(S1 × S3), #2(S1×̃S3), CP2}
or Ň4 ∈ {Y4

2, Ỹ4
2, Y4

1#(S1 × S3),

Ỹ4
1#(S1 × S3), S2 × D2, ξ2}
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If N4 is a closed simply-connected 4-manifold, then

DG (M) = 48 ⇐⇒ M ∼= S2 × S2,CP2#CP2,CP2#CP2

and no other closed simply-connected PL 4-manifold exists with G-degree
≤ 59.

Paola Cristofori Topological aspects of Colored Tensor Models



Colored graphs and Colored Tensor Models
Colored graphs and pseudomanifolds

Properties of the Gurau degree
Classification results

HINT OF PROOFS:

In all these cases K (Γ) may be assumed to have d + 1 vertices.

If (Γ, γ) is such a graph, N4 is a closed manifold and
{r , s, t} ∪ {i , j} = ∆5:

N4 = D4 ∪ (H
(1)
1 ∪ · · · ∪ H(1)

r1
) ∪ (H

(2)
1 ∪ · · · ∪ H(2)

r2
)︸ ︷︷ ︸

N(r ,s,t)

∪ (H
(3)
1 ∪ · · · ∪ H(3)

r3
) ∪ H(4)︸ ︷︷ ︸

N(i,j)

where:

N(r , s, t) = regular neighborhood of the subcomplex of K (Γ)
generated by vertices labelled by {r , s, t} (union of 0,1,2-handles)

N(i , j) = regular neighborhood of the subcomplex of K (Γ)
generated by vertices labelled by {i , j} (union of 3,4-handles)
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HINT OF PROOFS:

no 2-handles ⇒ N4 ∼= #m(S1 × S3)

(via [Montesinos, 1979])

one 2-handle and ∂N(r , s, t) ∼= S3 ⇒ N4 ∼= CP2

(via [Gordon-Luecke, 1989], ensuring (K , d) = (K0, 0))

one 2-handle and ∂N(r , s, t) ∼= S2 × S1 ⇒ Ň4 ∼= S2 × D2

(via [Gabai, 1987], ensuring (K , d) = (K0, 1))

one 2-handle and ∂N(r , s, t) ∼= RP3 ⇒ Ň4 ∼= ξ2

(via [Kronheimer-Mrowka-Ozsvath-Szabo, 2007], ensuring (K , d) = (K0, 2))
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Additivity of G-degree

DG is additive on connected sums of

S4, CP2, S2 × S2, S3 × S1, S3×̃S1, RP4, K3

Exotic structures and DG

DG does not satisfy the additivity property, within the set of closed PL
4-manifolds.

Example: let N and N ′ be two of the infinitely many different PL
manifolds homeomorphic to CP2#(#2(−CP2)).

By Wall theorem and additivity:
DG (N) = DG (N ′) =⇒ impossible by finiteness property of DG .
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THANK YOU
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