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Boltzmann planar maps

I A (planar) map m is a finite connected (multi-)graph embedded in the sphere

viewed up to homeomorphisms. We assume it to be rooted and bipartite.

I Given q = (q1,q2, . . . ) ∈ [0,∞)N, define a probability

Pq (m) =
1
Zq

∏
f faces of m

qdeg(f )/2,

where q is:

I admissible: Zq =
∑
m finite

∏
f faces of m qdeg(f )/2 < ∞,

I critical: increasing any qk leads to Zq = ∞,

I qk ∼ pq · c−k+1q · k−a with a ∈ ( 32 ,
5
2 ) and pq, cq > 0 fine tuned so q is critical.

Example for a = 2: qk = (6k−1 (2k − 1) (2k − 3))−11k≥2.

For a typical face: P(deg ≥ k ) ∼ C · k−(a−1/2) .
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Boltzmann maps as the gasket of a loop-decorated quadrangulation

critical O (n) loop model ⇐⇒ critical Boltzmann map with




a = 2 − 1
π arccos( n2 ) in the dense phase,

a = 2 + 1
π arccos( n2 ) in the dilute phase.

Supposedly related to γ -LQG with γ = min(2
√
a − 1, 2/

√
a − 1) ∈ (

√
2, 2).
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Balls in a map

For r ∈ N, let Ballr (m) be the closed ball of radius r for the graph distance, centred

at the origin of the root-edge.



Infinite Boltzmann planar maps

I SampleMn from Pq ( · | n vertices), thenMn → M∞ in distribution in the local
limit sense: P(Ballr (Mn ) = m) → P(Ballr (M∞) = m) for each r ∈ N and each

map m. [Stephenson ’15, also Björnberg & Stefánsson ’14]

I M∞ is an infinite map: locally finite, one-ended and embedded on the plane.

I Believe in a phase transition at a = 2:

a > 2 a < 2

I Idea: study the dual mapM
†
∞! The volume |Ballr (M†∞) | should increase much

faster when a < 2 than when a > 2.
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Simulation (by N. Curien): M∞ for a = 2.45



Simulation (by N. Curien): M∞ for a = 2.4



Simulation (by N. Curien): M∞ for a = 2.3



Simulation (by N. Curien): M∞ for a = 2.1



Simulation (by N. Curien): M∞ for a = 2



Simulation (by N. Curien): M∞ for a = 1.9



Simulation (by N. Curien): M∞ for a = 1.7



Simulation (by T. Budd): M
†
∞ for a = 2.45



Simulation (by T. Budd): M
†
∞ for a = 2.35



Simulation (by T. Budd): M
†
∞ for a = 2.3



Simulation (by T. Budd): M
†
∞ for a = 2



Simulation (by T. Budd): M
†
∞ for a = 1.8



Simulation (by T. Budd): M
†
∞ for a = 1.7



Balls in an infinite map

For r ∈ N, let Ballr (m∞) be the closed ball of radius r for the graph distance, centred

at the origin of the root-edge.

Let Ballr (m∞) be its hull.
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Volume growth

qk ∼ pq · c
−k+1
q · k−a

Theorem (Budd & Curien ’17 for a , 2; Budd & Curien &© ’18 for a = 2).

3/2 < a < 2 a = 2 2 < a < 5/2
|Ballr (M†∞) |

eCr e3π (r /2)
1/2

r
a−1/2
a−2

|BallFPPr (M†∞) |

∞ e3π
2
pqr /2 r

a−1/2
a−2

In the sense:

I If a > 2, then (n−
a−1/2
a−2 |Ball[nt ] (M

†
∞) |)t ≥0 → (Zt )t ≥0 in distribution.

I If a < 2, then r−1 log |Ballr (M†∞) | → C > 0 in probability.

I If a < 2, then the shortest FPP-length of an infinite path started at the origin has

finite mean!

Theorem (Curien &© in progress). For every a ∈ ( 32 ,
5
2 ), it holds that

|Ballr (M∞) | ≈ |Ballr (M∞) | ≈ r2a−1.
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Random walk

(Xn )n≥0 simple random walk onM∞ and (X †n )n≥0 simple random walk onM
†
∞.

Recurrent or transient? di�usive?

qk ∼ pq · c
−k+1
q · k−a

Theorem (Gurel-Gurevich & Nachmias ’13 for X ; Budd & Curien ’17 for X †).

3/2 < a < 2 2 ≤ a < 5/2
(Xn )n≥0 recurrent

(X †n )n≥0 transient transient?

Theorem (Curien &© in progress).

3/2 < a < 2 2 ≤ a < 5/2
d (Xn ,X0) . n? 1/3 1/(2a − 2); 1/3?
d (X †n ,X

†
0 ) . n? 0? (a − 2)/(a − 1)
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The big picture

3/2 5/2

1/2

2

Pioneer points onM∞: 1
2a−2 .

Pionneer points onM†∞: a−2
a−1 .

Upper bound for sub-di�usivity.

Lower bound for sub-di�usivity
in terms of volume growth: 1

2a .

Lower bound for sub-di�usivity
in terms of volume growth for a
transient graph: a−2

a−1/2 .

1

1/3 1/3

1/4

1/5

parameter a ∈ ( 32 ,
5
2 )

sub-di�usivity and
pioneer points ex-
ponents

Pionneer points onM†∞: 0?

Upper bound for
sub-di�usivity?

(Xn)n≥0 (X †n)n≥0



Key tool: peeling maps

Peeling random planar maps
(Very) preliminary version

N. Curien

Gabriel Metsu (Dutch Baroque Era Painter, 1629-1667): Woman Peeling an

Apple

1



Key tool: peeling maps
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(a) (b) 
Fig. 4. Decomposition of a surface by (a) slicing and (b) peeling. 

where K is related to the cosmological constant on the lattice, f, by K = e-;.  In this 
paper, we use K instead of ~. Visually speaking, K, x i, and yj  are considered to be put 
on each triangle, each link of ~/, and each link of ~ ' ,  respectively. Let Xc, Yc, and K c 
be fixed numbers and assume that 
(a) all the convergence radii of x i (1 ~< i ~< N) are equal to I xc l, 
(b) all the convergence radii of yj  (1 ~< j ~< M) are equal to I Yc I, 
(c) the convergence radius of K is equal to I Kc I, 
for any transfer matrix /~(~. The assumptions (a), (b), and (c) lead to the fact that all 
the transfer matrices/~(h)M.jV are analytic in the region I x i [ <( I X c I (1 ~< i ~< N), I yj I < [ Y~ I 
(1 <~j<~M),  and I KI <lKc I. In the next section, we will extend the above analytic 
region to I xil ~< I% I(1 ~<i~<N), I y j l  ~< I ycJ(1 ~<j ~<M), and I K I < I K~ [in order to 
define inner products in the Laplace transformed representation. The assumptions (a), 
(b), and (c) are natural because the local structure of the surface is independent of the 
global structure. 

In the following we will propose new minimal-step transfer matrices, which play an 
essential role in the construction of the discretized non-critical string field theory in the 
present paper. In Ref. [9] the authors have considered one-step decomposition as a 
minimal-step one. Instead of the one-step decomposition like Fig. 4a, we consider in the 
present paper the decomposition like 'peeling an apple' in Fig. 4b. The reason why we 
use the 'peeling decomposition' instead of the 'slicing decomposition' is not only that 
we can easily construct the string field theories but also that the relation between the 
string field theories and the matrix models is clear. In the case of the 'peeling 
decomposition', we need a marked link which indicates the present peeling point and 
has been already introduced on each initial string in the definitions of /~h)  and/~(~.  A 
minimal-step 'peeling decomposition' removes one triangle with a marked link from the 
triangulated surface. Therefore, the minimal-step 'peeling decomposition' is considered 
to be a (1//)-step decomposition if the length of the initial string is I. 



Key tool: peeling maps as Tim does

P

V

Budd ’16: the pair (Pn ,Vn )n≥0 is a Markov chain started from (1, 0).

Precisely, from

combinatorial considerations:

I (Pn )n≥0 is some (a − 1)-stable random walk conditioned to stay positive.
I Given (Pn )n≥0, the increments (Vn+1 −Vn )n≥0 are independent and if

Pn+1 − Pn + 1 = −`, then Vn+1 −Vn has the law of |B (`) |, the volume of a

q-Boltzmann map conditioned to have a root-face of degree 2`.
I Budd & Curien ’17: `−(a−1/2) |B (`) | → ξ in distribution.
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Growth in any peeling process

Theorem (Budd & Curien ’17 for a , 2; Budd & Curien &© ’18 for a = 2). For every

a ∈ ( 32 ,
5
2 ), it holds that(

n−
1

a−1 P[nt ],n
−
a−1/2
a−1 V[nt ]

)
t ≥0

(d )
−−−−−→
n→∞

(
ϒ↑(t ),V(ϒ↑) (t )

)
t ≥0 .

ϒ↑ is a (a − 1)-stable Lévy process conditioned to stay positive and V(ϒ↑) is analogous

to the discrete se�ing.
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Volume growth in the dual graph distance

Can describe the dual graph distance via a peeling by layer.

Hn = distance reached a�er n steps.

θr = inf {n : Hn ≥ r } = number of steps to reveal Ballr (M†∞).

Proposition.

Hn

(logn)2
(P)
−−−−−→
n→∞

1
2π2 , equiv.

logθr
√
r

(P)
−−−−−→
n→∞

π
√
2.

Heuristic: it takes ≈ 2`
pq log ` steps to complete a layer of perimeter 2`. Since

n−1Pn → ϒ↑1 , we get

Hn ≈

n−1∑
k=0

pq log Pk
2Pk

≈

n∑
k=1

pq logk

2ϒ↑1 k
≈

1
π2

(logn)2

2
.

Consequently: since n−3/2Vn → V(ϒ↑) (1), we get

log |Ballr (M†∞) |
√
r

=
logVθr
logθr

·
logθr
√
r

(P)
−−−−−→
r→∞

3
2
· π
√
2 =

3π
√
2
.



Volume growth in FPP for a = 2
Key observation: FPP inM

†
∞ = uniform random peeling in continuous time.

Tn = n-th jump-time of the process ( |BallFPPt (M†∞) |)t .

Ur = inf {n : Tn ≥ r } = number of steps to reveal BallFPPr (M†∞).

Proposition.

Tn
logn

(P)
−−−−−→
n→∞

1
π2

pq
, equiv.

logUr
r

(P)
−−−−−→
n→∞

π2
pq.

Heuristic: Tk+1 −Tk is the infimum of 2Pk i.i.d. Exp(1) so Tk+1 −Tk ≈
1

2Pk . Since,

k−1Pk → ϒ↑1 , we get

Tn ≈
∑
k<n

1
2Pk

≈
∑
k<n

1

2kϒ↑1
≈

logn
π2

pq
.

Consequently: since n−3/2Vn → V(ϒ↑) (1), we get

log |BallFPPr (M†∞) |

r
=

logUr
r
·
logVUr
logUr

(P)
−−−−−→
r→∞

3
2
· π2

pq =
3π2

pq

2
.



Pioneer points of the RW on the dual map



Pioneer points of the RW

maxk≤n d (o, Pn ) . n
1

2(a−1)
? Idea: peeling along the walk.

For any peeling algorithm: if D+/−n are the greatest/smallest distance from the

origin to a vertex on the boundary of en the explored region a�er n peeling steps,

then

BallD−n (M∞) ⊂ en ⊂ BallD+n (M∞).

Taking the volume:

(D−n )
2a−1 . n

a−1/2
a−1 . (D+n )

2a−1, i.e. D−n . n
1

2(a−1) . D+n .

Furthermore,

D+n − D
−
n ≤ aperM(∂en )

∞ . |∂en |
1/2 ≈ n

1
2(a−1)

so D−n ≈ n
1

2(a−1) .

Application with the peeling along the walk:

I Greatest distance to the origin of a pioneer point a�er n peeling steps ≈ n
1

2(a−1)
.

I Peeling only when the walk sits a pioneer point; logarithmic vertex-degrees

=⇒ ≈ n peeling steps when reaching the n-th pioneer point.



Sub-di�usivity of the RW

NR = # steps to exit BallR (M∞) & Rβ ? (β ≥ 2)

General strategy: find a subset of edges CR ⊂ BallR (M∞) \ BallR/2 (M∞) such that

I |CR | & Rγ ;

I The walk has to traverse CR to exit BallR (M∞);
I The walk flashed on CR is di�usive;

I CR defined in an ‘ergodic’ way, so P(k-th step ∈ CR ) = P(root-edge ∈ CR );

I P(root-edge ∈ CR ) . R−δ ;

Then a�er N steps, the number of steps in CR is . N · R−δ ; but when exiting

BallR (M∞), the walk has made & R2γ steps in CR so

NR & R2γ+δ .

In our cases, 2γ + δ = 3.



Further questions

Discrete infinite maps:

I Exact value for sub-di�usive exponent? both onM∞ andM
†
∞.

I Transience ofM
†
∞ for a ≥ 2?

Scaling limits:

I n−1/(2a−1)M∞ → M along subsequences [Le Gall & Miermont ’11, © ’18].

Uniqueness of the limit? ‘stable map’

I n−(a−1/2)/(a−2)M†∞ → M
†
? ‘stable sphere’


