Geometric and spectral aspects of planar maps with high degrees

Cyril Marzouk
CNRS E Université Paris Diderot
ERC CombiTop
Joint with
Timothy Budd \mathcal{E} Nicolas Curien

Boltzmann planar maps

- A (planar) map \mathfrak{m} is a finite connected (multi-)graph embedded in the sphere viewed up to homeomorphisms. We assume it to be rooted and bipartite.

Boltzmann planar maps

- A (planar) map \mathfrak{m} is a finite connected (multi-)graph embedded in the sphere viewed up to homeomorphisms. We assume it to be rooted and bipartite.
- Given $\mathrm{q}=\left(q_{1}, q_{2}, \ldots\right) \in[0, \infty)^{\mathrm{N}}$, define a probability

$$
\mathbf{P}_{\mathbf{q}}(\mathfrak{m})=\frac{1}{Z_{\mathbf{q}}} \prod_{f \text { faces of } \mathfrak{m}} q_{\operatorname{deg}(f) / 2}
$$

where q is:

Boltzmann planar maps

- A (planar) map \mathfrak{m} is a finite connected (multi-)graph embedded in the sphere viewed up to homeomorphisms. We assume it to be rooted and bipartite.
- Given $\mathrm{q}=\left(q_{1}, q_{2}, \ldots\right) \in[0, \infty)^{\mathrm{N}}$, define a probability

$$
\mathbf{P}_{\mathbf{q}}(\mathfrak{m})=\frac{1}{Z_{\mathbf{q}}} \prod_{f \text { faces of } \mathfrak{m}} q_{\operatorname{deg}(f) / 2}
$$

where q is:

Boltzmann planar maps

- A (planar) map \mathfrak{m} is a finite connected (multi-)graph embedded in the sphere viewed up to homeomorphisms. We assume it to be rooted and bipartite.
- Given $\mathrm{q}=\left(q_{1}, q_{2}, \ldots\right) \in[0, \infty)^{\mathrm{N}}$, define a probability

$$
\mathbf{P}_{\mathbf{q}}(\mathfrak{m})=\frac{1}{Z_{\mathbf{q}}} \prod_{f \text { faces of } \mathfrak{m}} q_{\operatorname{deg}(f) / 2}
$$

where q is:

- admissible: $Z_{\mathrm{q}}=\sum_{\mathrm{m} \text { finite }} \Pi_{f \text { faces of } m} q_{\operatorname{deg}(f) / 2}<\infty$,

Boltzmann planar maps

- A (planar) map \mathfrak{m} is a finite connected (multi-)graph embedded in the sphere viewed up to homeomorphisms. We assume it to be rooted and bipartite.
- Given $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right) \in[0, \infty)^{\mathbf{N}}$, define a probability

$$
\mathbf{P}_{\mathbf{q}}(\mathfrak{m})=\frac{1}{Z_{\mathbf{q}}} \prod_{f \text { faces of } \mathfrak{m}} q_{\operatorname{deg}(f) / 2}
$$

where q is:

- admissible: $Z_{\mathrm{q}}=\sum_{\mathrm{m} \text { finite }} \Pi_{f \text { faces of } m} q_{\mathrm{deg}(f) / 2}<\infty$,
- critical: increasing any q_{k} leads to $Z_{\mathrm{q}}=\infty$,

Boltzmann planar maps

- A (planar) map \mathfrak{m} is a finite connected (multi-)graph embedded in the sphere viewed up to homeomorphisms. We assume it to be rooted and bipartite.
- Given $\mathrm{q}=\left(q_{1}, q_{2}, \ldots\right) \in[0, \infty)^{\mathrm{N}}$, define a probability

$$
\mathbf{P}_{\mathbf{q}}(\mathfrak{m})=\frac{1}{Z_{\mathbf{q}}} \prod_{f \text { faces of } \mathfrak{m}} q_{\operatorname{deg}(f) / 2}
$$

where q is:

- admissible: $Z_{\mathrm{q}}=\sum_{\mathrm{m} \text { finite }} \Pi_{f \text { faces of } m} q_{\mathrm{deg}(f) / 2}<\infty$,
- critical: increasing any q_{k} leads to $Z_{\mathrm{q}}=\infty$,
- $q_{k} \sim \mathrm{p}_{\mathrm{q}} \cdot c_{\mathrm{q}}^{-k+1} \cdot k^{-a}$ with $a \in\left(\frac{3}{2}, \frac{5}{2}\right)$ and $\mathrm{p}_{\mathrm{q}}, c_{\mathrm{q}}>0$ fine tuned so q is critical. Example for $a=2: q_{k}=\left(6^{k-1}(2 k-1)(2 k-3)\right)^{-1} \mathbf{1}_{k \geq 2}$.

Boltzmann planar maps

- A (planar) map \mathfrak{m} is a finite connected (multi-)graph embedded in the sphere viewed up to homeomorphisms. We assume it to be rooted and bipartite.
- Given $\mathrm{q}=\left(q_{1}, q_{2}, \ldots\right) \in[0, \infty)^{\mathrm{N}}$, define a probability

$$
\mathbf{P}_{\mathbf{q}}(\mathfrak{m})=\frac{1}{Z_{\mathbf{q}}} \prod_{f \text { faces of } \mathfrak{m}} q_{\operatorname{deg}(f) / 2}
$$

where q is:

- admissible: $Z_{\mathrm{q}}=\sum_{\mathrm{m}}$ finite $\Pi_{f \text { faces of } m} q_{\mathrm{deg}(f) / 2}<\infty$,
- critical: increasing any q_{k} leads to $Z_{\mathrm{q}}=\infty$,
- $q_{k} \sim \mathrm{p}_{\mathrm{q}} \cdot c_{\mathrm{q}}^{-k+1} \cdot k^{-a}$ with $a \in\left(\frac{3}{2}, \frac{5}{2}\right)$ and $\mathrm{p}_{\mathrm{q}}, c_{\mathrm{q}}>0$ fine tuned so q is critical.

Example for $a=2: q_{k}=\left(6^{k-1}(2 k-1)(2 k-3)\right)^{-1} \mathbf{1}_{k \geq 2}$.
For a typical face: $\mathrm{P}(\operatorname{deg} \geq k) \sim C \cdot k^{-(a-1 / 2)}$.

Boltzmann maps as the gasket of a loop-decorated quadrangulation

Boltzmann maps as the gasket of a loop-decorated quadrangulation

Boltzmann maps as the gasket of a loop-decorated quadrangulation

critical $O(n)$ loop model \Longleftrightarrow critical Boltzmann map with
$\left\{\begin{array}{l}a=2-\frac{1}{\pi} \arccos \left(\frac{n}{2}\right) \text { in the dense phase, } \\ a=2+\frac{1}{\pi} \arccos \left(\frac{n}{2}\right) \text { in the dilute phase. }\end{array}\right.$
Supposedly related to γ-LQG with $\gamma=\min (2 \sqrt{a-1}, 2 / \sqrt{a-1}) \in(\sqrt{2}, 2)$.

Balls in a map

For $r \in \mathbf{N}$, let $\mathrm{Ball}_{r}(\mathrm{~m})$ be the closed ball of radius r for the graph distance, centred at the origin of the root-edge.

Infinite Boltzmann planar maps

- Sample \mathfrak{M}_{n} from $\mathrm{P}_{\mathbf{q}}(\cdot \mid n$ vertices $)$, then $\mathfrak{M}_{n} \rightarrow \mathfrak{M}_{\infty}$ in distribution in the local limit sense: $\mathbf{P}\left(\operatorname{Ball}_{r}\left(\mathfrak{M}_{n}\right)=\mathfrak{m}\right) \rightarrow \mathbf{P}\left(\operatorname{Ball}_{r}\left(\mathfrak{M}_{\infty}\right)=\mathfrak{m}\right)$ for each $r \in \mathrm{~N}$ and each map m. [Stephenson '15, also Björnberg E Stefánsson '14]

Infinite Boltzmann planar maps

- Sample \mathfrak{M}_{n} from $\mathrm{P}_{\mathbf{q}}(\cdot \mid n$ vertices $)$, then $\mathfrak{M}_{n} \rightarrow \mathfrak{M}_{\infty}$ in distribution in the local limit sense: $\mathbf{P}\left(\operatorname{Ball}_{r}\left(\mathfrak{M}_{n}\right)=\mathfrak{m}\right) \rightarrow \mathbf{P}\left(\operatorname{Ball}_{r}\left(\mathfrak{M}_{\infty}\right)=\mathfrak{m}\right)$ for each $r \in \mathrm{~N}$ and each map \mathfrak{m}. [Stephenson '15, also Björnberg E Stefánsson '14]
- \mathfrak{M}_{∞} is an infinite map: locally finite, one-ended and embedded on the plane.

Infinite Boltzmann planar maps

- Sample \mathfrak{M}_{n} from $\mathrm{P}_{\mathbf{q}}(\cdot \mid n$ vertices $)$, then $\mathfrak{M}_{n} \rightarrow \mathfrak{M}_{\infty}$ in distribution in the local limit sense: $\mathbf{P}\left(\operatorname{Ball}_{r}\left(\mathfrak{M}_{n}\right)=\mathfrak{m}\right) \rightarrow \mathbf{P}\left(\operatorname{Ball}_{r}\left(\mathfrak{M}_{\infty}\right)=\mathfrak{m}\right)$ for each $r \in \mathrm{~N}$ and each map m. [Stephenson '15, also Björnberg E Stefánsson '14]
- \mathfrak{M}_{∞} is an infinite map: locally finite, one-ended and embedded on the plane.
- Believe in a phase transition at $a=2$:

Infinite Boltzmann planar maps

- Sample \mathfrak{M}_{n} from $\mathbf{P}_{\mathbf{q}}(\cdot \mid n$ vertices $)$, then $\mathfrak{M}_{n} \rightarrow \mathfrak{M}_{\infty}$ in distribution in the local limit sense: $\mathbf{P}\left(\operatorname{Ball}_{r}\left(\mathfrak{M}_{n}\right)=\mathfrak{m}\right) \rightarrow \mathbf{P}\left(\operatorname{Ball}_{r}\left(\mathfrak{M}_{\infty}\right)=\mathfrak{m}\right)$ for each $r \in \mathrm{~N}$ and each map \mathfrak{m}. [Stephenson '15, also Björnberg E Stefánsson '14]
- \mathfrak{M}_{∞} is an infinite map: locally finite, one-ended and embedded on the plane.
- Believe in a phase transition at $a=2$:

- Idea: study the dual map $\mathfrak{M}_{\infty}^{\dagger}$! The volume $\left|\operatorname{Ball}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right|$ should increase much faster when $a<2$ than when $a>2$.

Simulation (by N. Curien): \mathfrak{M}_{∞} for $a=2.45$

Simulation (by N. Curien): \mathfrak{M}_{∞} for $a=2.4$

Simulation (by N. Curien): \mathfrak{M}_{∞} for $a=2.3$

Simulation (by N. Curien): \mathfrak{M}_{∞} for $a=2.1$

Simulation (by N. Curien): \mathfrak{M}_{∞} for $a=2$

Simulation (by N. Curien): \mathfrak{M}_{∞} for $a=1.9$

Simulation (by N. Curien): \mathfrak{M}_{∞} for $a=1.7$

Simulation (by T. Budd): $\mathfrak{M}_{\infty}^{\dagger}$ for $a=2.45$

Simulation (by T. Budd): $\mathfrak{M}_{\infty}^{\dagger}$ for $a=2.35$

Simulation (by T. Budd): $\mathfrak{M}_{\infty}^{\dagger}$ for $a=2.3$

Simulation (by T. Budd): $\mathfrak{M}_{\infty}^{\dagger}$ for $a=2$

Simulation (by T. Budd): $\mathfrak{M}_{\infty}^{\dagger}$ for $a=1.8$

Simulation (by T. Budd): $\mathfrak{M}_{\infty}^{\dagger}$ for $a=1.7$

Balls in an infinite map

For $r \in \mathrm{~N}$, let Ball ${ }_{r}\left(\mathfrak{m}_{\infty}\right)$ be the closed ball of radius r for the graph distance, centred at the origin of the root-edge.

Balls in an infinite map

For $r \in \mathrm{~N}$, let Ball $r_{r}\left(\mathfrak{m}_{\infty}\right)$ be the closed ball of radius r for the graph distance, centred at the origin of the root-edge. Let $\overline{\operatorname{Ball}}_{r}\left(\mathfrak{m}_{\infty}\right)$ be its hull.

Volume growth

$$
q_{k} \sim \mathrm{p}_{\mathbf{q}} \cdot c_{\mathbf{q}}^{-k+1} \cdot k^{-a}
$$

Theorem (Budd \mathcal{E} Curien ' 17 for $a \neq 2$; Budd \mathcal{E} Curien $\mathcal{E} \odot{ }^{\circ} 18$ for $a=2$).

	$3 / 2<a<2$	$a=2$	$2<a<5 / 2$
$\left\|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$			

Volume growth

$$
q_{k} \sim \mathrm{p}_{\mathbf{q}} \cdot c_{\mathbf{q}}^{-k+1} \cdot k^{-a}
$$

Theorem (Budd \mathcal{E} Curien ' 17 for $a \neq 2$; Budd \mathcal{E} Curien $\mathcal{E} \odot{ }^{\circ} 18$ for $a=2$).

	$3 / 2<a<2$	$a=2$	$2<a<5 / 2$
$\left\|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$			$r^{\frac{a-1 / 2}{a-2}}$

In the sense:

- If $a>2$, then $\left(n^{-\frac{a-1 / 2}{a-2}}\left|\overline{\operatorname{Ball}}_{[n t]}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right|\right)_{t \geq 0} \rightarrow\left(Z_{t}\right)_{t \geq 0}$ in distribution.

Volume growth

$$
q_{k} \sim \mathrm{p}_{\mathbf{q}} \cdot c_{\mathbf{q}}^{-k+1} \cdot k^{-a}
$$

Theorem (Budd \mathcal{E} Curien ' 17 for $a \neq 2$; Budd \mathcal{E} Curien \mathcal{E} © ' 18 for $a=2$).

	$3 / 2<a<2$	$a=2$	$2<a<5 / 2$
$\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right) \mid$	$\mathrm{e}^{C r}$		$r^{\frac{a-1 / 2}{a-2}}$

In the sense:

- If $a>2$, then $\left(n^{-\frac{a-1 / 2}{a-2}}\left|\overline{\operatorname{Ball}}_{[n t]}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right|\right)_{t \geq 0} \rightarrow\left(Z_{t}\right)_{t \geq 0}$ in distribution.
- If $a<2$, then $r^{-1} \log \left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right| \rightarrow C>0$ in probability.

Volume growth

$$
q_{k} \sim \mathrm{p}_{\mathbf{q}} \cdot c_{\mathbf{q}}^{-k+1} \cdot k^{-a}
$$

Theorem (Budd \mathcal{E} Curien ' 17 for $a \neq 2$; Budd \mathcal{E} Curien \mathcal{E} © ' 18 for $a=2$).

	$3 / 2<a<2$	$a=2$	$2<a<5 / 2$
$\left\|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$	$\mathrm{e}^{C r}$	$\mathrm{e}^{3 \pi(r / 2)^{1 / 2}}$	$r^{\frac{a-1 / 2}{a-2}}$

In the sense:

- If $a>2$, then $\left(n^{-\frac{a-1 / 2}{a-2}}\left|\overline{\operatorname{Ball}}_{[n t]}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right|\right)_{t \geq 0} \rightarrow\left(Z_{t}\right)_{t \geq 0}$ in distribution.
- If $a<2$, then $r^{-1} \log \left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right| \rightarrow C>0$ in probability.

Volume growth

$$
q_{k} \sim \mathrm{p}_{\mathbf{q}} \cdot c_{\mathbf{q}}^{-k+1} \cdot k^{-a}
$$

Theorem (Budd \mathcal{E} Curien ' 17 for $a \neq 2$; Budd \mathcal{E} Curien $\mathcal{E} \odot{ }^{\circ} 18$ for $a=2$).

	$3 / 2<a<2$	$a=2$	$2<a<5 / 2$
$\left\|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$	$\mathrm{e}^{C r}$	$\mathrm{e}^{3 \pi(r / 2)^{1 / 2}}$	$r^{\frac{a-1 / 2}{a-2}}$

In the sense:

- If $a<2$, then $r^{-1} \log \left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right| \rightarrow C>0$ in probability.

Theorem (Curien \mathcal{E} © in progress). For every $a \in\left(\frac{3}{2}, \frac{5}{2}\right)$, it holds that $\left|\operatorname{Ball}_{r}\left(\mathfrak{M}_{\infty}\right)\right| \approx\left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}\right)\right| \approx r^{2 a-1}$.

Volume growth

$$
q_{k} \sim \mathrm{p}_{\mathbf{q}} \cdot c_{\mathbf{q}}^{-k+1} \cdot k^{-a}
$$

Theorem (Budd \mathcal{E} Curien ' 17 for $a \neq 2$; Budd \mathcal{E} Curien $\mathcal{E} \odot{ }^{\circ} 18$ for $a=2$).

	$3 / 2<a<2$	$a=2$	$2<a<5 / 2$
$\left\|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$	$\mathrm{e}^{C r}$	$\mathrm{e}^{3 \pi(r / 2)^{1 / 2}}$	$r^{\frac{a-1 / 2}{a-2}}$
$\left\|\overline{\operatorname{Ball}}_{r}^{\mathrm{FPP}}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$			

In the sense:

- If $a<2$, then $r^{-1} \log \left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right| \rightarrow C>0$ in probability.

Theorem (Curien \mathcal{E} © in progress). For every $a \in\left(\frac{3}{2}, \frac{5}{2}\right)$, it holds that $\left|\operatorname{Ball}_{r}\left(\mathfrak{M}_{\infty}\right)\right| \approx\left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}\right)\right| \approx r^{2 a-1}$.

Volume growth

$$
q_{k} \sim \mathrm{p}_{\mathbf{q}} \cdot c_{\mathbf{q}}^{-k+1} \cdot k^{-a}
$$

Theorem (Budd \mathcal{E} Curien ' 17 for $a \neq 2$; Budd \mathcal{E} Curien $\mathcal{E} \odot{ }^{\circ} 18$ for $a=2$).

	$3 / 2<a<2$	$a=2$	$2<a<5 / 2$
$\left\|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$	$\mathrm{e}^{C r}$	$\mathrm{e}^{3 \pi(r / 2)^{1 / 2}}$	$r^{\frac{a-1 / 2}{a-2}}$
$\left\|\overline{\operatorname{Ball}}_{r}^{\text {PPP }}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$			$r^{\frac{a-1 / 2}{a-2}}$

In the sense:

- If $a<2$, then $r^{-1} \log \left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right| \rightarrow C>0$ in probability.

Theorem (Curien \mathcal{E} © in progress). For every $a \in\left(\frac{3}{2}, \frac{5}{2}\right)$, it holds that $\left|\operatorname{Ball}_{r}\left(\mathfrak{M}_{\infty}\right)\right| \approx\left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}\right)\right| \approx r^{2 a-1}$.

Volume growth

$$
q_{k} \sim \mathrm{p}_{\mathbf{q}} \cdot c_{\mathbf{q}}^{-k+1} \cdot k^{-a}
$$

Theorem (Budd \mathcal{E} Curien ' 17 for $a \neq 2$; Budd \mathcal{E} Curien $\mathcal{E} \odot{ }^{\circ} 18$ for $a=2$).

	$3 / 2<a<2$	$a=2$	$2<a<5 / 2$
$\left\|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$	$\mathrm{e}^{C r}$	$\mathrm{e}^{3 \pi(r / 2)^{1 / 2}}$	$r^{\frac{a-1 / 2}{a-2}}$
$\left\|\overline{\operatorname{BallI}}_{r}^{\mathrm{PP}}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$	∞		$r^{\frac{a-1 / 2}{a-2}}$

In the sense:

- If $a<2$, then $r^{-1} \log \left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right| \rightarrow C>0$ in probability.
- If $a<2$, then the shortest FPP-length of an infinite path started at the origin has finite mean!

Theorem (Curien \mathcal{E} © in progress). For every $a \in\left(\frac{3}{2}, \frac{5}{2}\right)$, it holds that $\left|\operatorname{Ball}_{r}\left(\mathfrak{M}_{\infty}\right)\right| \approx\left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}\right)\right| \approx r^{2 a-1}$.

Volume growth

$$
q_{k} \sim \mathrm{p}_{\mathbf{q}} \cdot c_{\mathbf{q}}^{-k+1} \cdot k^{-a}
$$

Theorem (Budd \mathcal{E} Curien ' 17 for $a \neq 2$; Budd \mathcal{E} Curien $\mathcal{E} \odot{ }^{\circ} 18$ for $a=2$).

	$3 / 2<a<2$	$a=2$	$2<a<5 / 2$
$\left\|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$	$\mathrm{e}^{C r}$	$\mathrm{e}^{3 \pi(r / 2)^{1 / 2}}$	$r^{\frac{a-1 / 2}{a-2}}$
$\left\|\overline{\operatorname{BallI}}_{r}^{\mathrm{FPP}}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right\|$	∞	$\mathrm{e}^{3 \pi^{2} \mathrm{p}_{\mathrm{q}} r / 2}$	$r^{\frac{a-1 / 2}{a-2}}$

In the sense:

- If $a<2$, then $r^{-1} \log \left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right| \rightarrow C>0$ in probability.
- If $a<2$, then the shortest FPP-length of an infinite path started at the origin has finite mean!

Theorem (Curien \mathcal{E} © in progress). For every $a \in\left(\frac{3}{2}, \frac{5}{2}\right)$, it holds that $\left|\operatorname{Ball}_{r}\left(\mathfrak{M}_{\infty}\right)\right| \approx\left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}\right)\right| \approx r^{2 a-1}$.

Random walk

$\left(X_{n}\right)_{n \geq 0}$ simple random walk on \mathfrak{M}_{∞} and $\left(X_{n}^{\dagger}\right)_{n \geq 0}$ simple random walk on $\mathfrak{M}_{\infty}^{\dagger}$. Recurrent or transient? diffusive?

Random walk

$\left(X_{n}\right)_{n \geq 0}$ simple random walk on \mathfrak{M}_{∞} and $\left(X_{n}^{\dagger}\right)_{n \geq 0}$ simple random walk on $\mathfrak{M}_{\infty}^{\dagger}$. Recurrent or transient? diffusive?

$$
q_{k} \sim \mathrm{p}_{\mathbf{q}} \cdot c_{\mathbf{q}}^{-k+1} \cdot k^{-a}
$$

Theorem (Gurel-Gurevich \mathcal{E} Nachmias '13 for X; Budd \mathcal{E} Curien ' 17 for X^{\dagger}).

	$3 / 2<a<2$	$2 \leq a<5 / 2$
$\left(X_{n}\right)_{n \geq 0}$	recurrent	
$\left(X_{n}^{\dagger}\right)_{n \geq 0}$	transient	transient?

Random walk

$\left(X_{n}\right)_{n \geq 0}$ simple random walk on \mathfrak{M}_{∞} and $\left(X_{n}^{\dagger}\right)_{n \geq 0}$ simple random walk on $\mathfrak{M}_{\infty}^{\dagger}$. Recurrent or transient? diffusive?

$$
q_{k} \sim \mathrm{p}_{\mathbf{q}} \cdot c_{\mathbf{q}}^{-k+1} \cdot k^{-a}
$$

Theorem (Gurel-Gurevich \mathcal{E} Nachmias ' 13 for X; Budd \mathcal{E} Curien ' 17 for X^{\dagger}).

	$3 / 2<a<2$	$2 \leq a<5 / 2$
$\left(X_{n}\right)_{n \geq 0}$	recurrent	
$\left(X_{n}^{\dagger}\right)_{n \geq 0}$	transient	transient?

Theorem (Curien $\mathcal{E} \mathcal{()}$ in progress).

	$3 / 2<a<2$	$2 \leq a<5 / 2$
$d\left(X_{n}, X_{0}\right) \lesssim n^{?}$	$1 / 3$	$1 /(2 a-2) ; \quad 1 / 3 ?$
$d\left(X_{n}^{\dagger}, X_{0}^{\dagger}\right) \lesssim n^{?}$	$0 ?$	$(a-2) /(a-1)$

The big picture

Key tool: peeling maps

Peeling random planar maps
 (Very) preliminary version

N. Curien

Gabriel Metsu (Dutch Baroque Era Painter, 1629-1667): Woman Peeling an Apple

Key tool: peeling maps

Y. Watabiki / Nuclear Physics B441 (1995) 119-163

Fig. 4. Decomposition of a surface by (a) slicing and (b) peeling.

Key tool: peeling maps as Tim does

Key tool: peeling maps as Tim does

Budd '16: the pair $\left(P_{n}, V_{n}\right)_{n \geq 0}$ is a Markov chain started from (1,0). Precisely, from combinatorial considerations:

- $\left(P_{n}\right)_{n \geq 0}$ is some $(a-1)$-stable random walk conditioned to stay positive.
- Given $\left(P_{n}\right)_{n \geq 0}$, the increments $\left(V_{n+1}-V_{n}\right)_{n \geq 0}$ are independent and if $P_{n+1}-P_{n}+1=-\ell$, then $V_{n+1}-V_{n}$ has the law of $\left|B^{(\ell)}\right|$, the volume of a q -Boltzmann map conditioned to have a root-face of degree 2ℓ.
- Budd \mathcal{E} Curien ' $17: \ell^{-(a-1 / 2)}\left|B^{(\ell)}\right| \rightarrow \xi$ in distribution.

Growth in any peeling process

Theorem (Budd \mathcal{E} Curien '17 for $a \neq 2$; Budd \mathcal{E} Curien \mathcal{E} © ' 18 for $a=2$). For every $a \in\left(\frac{3}{2}, \frac{5}{2}\right)$, it holds that

$$
\left(n^{-\frac{1}{a-1}} P_{[n t]}, n^{-\frac{a-1 / 2}{a-1}} V_{[n t]}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(d)}\left(\Upsilon^{\uparrow}(t), \mathcal{V}\left(\Upsilon^{\uparrow}\right)(t)\right)_{t \geq 0} .
$$

Υ^{\uparrow} is a ($a-1$)-stable Lévy process conditioned to stay positive and $\mathcal{V}\left(\Upsilon^{\uparrow}\right)$ is analogous to the discrete setting.

Peeling by layer

Volume growth in the dual graph distance

Can describe the dual graph distance via a peeling by layer.
$H_{n}=$ distance reached after n steps.

$$
\theta_{r}=\inf \left\{n: H_{n} \geq r\right\}=\text { number of steps to reveal } \overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)
$$

Proposition.

$$
\frac{H_{n}}{(\log n)^{2}} \xrightarrow[n \rightarrow \infty]{\stackrel{(\mathbf{P})}{\longrightarrow}} \frac{1}{2 \pi^{2}}, \quad \text { equiv. } \quad \frac{\log \theta_{r}}{\sqrt{r}} \xrightarrow[n \rightarrow \infty]{(\mathbf{P})} \pi \sqrt{2}
$$

Heuristic: it takes $\approx \frac{2 \ell}{\mathrm{p}_{\mathrm{q}} \log \ell}$ steps to complete a layer of perimeter 2ℓ. Since $n^{-1} P_{n} \rightarrow \Upsilon_{1}^{\uparrow}$, we get

$$
H_{n} \approx \sum_{k=0}^{n-1} \frac{\mathrm{p}_{\mathrm{q}} \log P_{k}}{2 P_{k}} \approx \sum_{k=1}^{n} \frac{\mathrm{p}_{\mathrm{q}} \log k}{2 \Upsilon_{1}^{\uparrow} k} \approx \frac{1}{\pi^{2}} \frac{(\log n)^{2}}{2}
$$

Consequently: since $n^{-3 / 2} V_{n} \rightarrow \mathcal{V}\left(\Upsilon^{\uparrow}\right)(1)$, we get

$$
\frac{\log \left|\overline{\operatorname{Ball}}_{r}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right|}{\sqrt{r}}=\frac{\log V_{\theta_{r}}}{\log \theta_{r}} \cdot \frac{\log \theta_{r}}{\sqrt{r}} \xrightarrow[r \rightarrow \infty]{(\mathbf{P})} \frac{3}{2} \cdot \pi \sqrt{2}=\frac{3 \pi}{\sqrt{2}} .
$$

Volume growth in FPP for $a=2$

Key observation: FPP in $\mathfrak{M}_{\infty}^{\dagger}=$ uniform random peeling in continuous time.

$$
\begin{aligned}
T_{n} & =n \text {-th jump-time of the process }\left(\left|\overline{\operatorname{Ball}}_{t}^{\mathrm{FPP}}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right|\right)_{t} . \\
U_{r} & =\inf \left\{n: T_{n} \geq r\right\}=\text { number of steps to reveal } \overline{\operatorname{Ball}_{r}^{\mathrm{FPP}}}\left(\mathfrak{M}_{\infty}^{\dagger}\right) .
\end{aligned}
$$

Proposition.

$$
\frac{T_{n}}{\log n} \xrightarrow[n \rightarrow \infty]{(\mathbf{P})} \frac{1}{\pi^{2} \mathrm{p}_{\mathbf{q}}}, \quad \text { equiv. } \quad \frac{\log U_{r}}{r} \xrightarrow[n \rightarrow \infty]{(\mathbf{P})} \pi^{2} \mathrm{p}_{\mathbf{q}}
$$

Heuristic: $T_{k+1}-T_{k}$ is the infimum of $2 P_{k}$ i.i.d. $\operatorname{Exp}(1)$ so $T_{k+1}-T_{k} \approx \frac{1}{2 P_{k}}$. Since, $k^{-1} P_{k} \rightarrow \Upsilon_{1}^{\uparrow}$, we get

$$
T_{n} \approx \sum_{k<n} \frac{1}{2 P_{k}} \approx \sum_{k<n} \frac{1}{2 k \Upsilon_{1}^{\uparrow}} \approx \frac{\log n}{\pi^{2} \mathrm{p}_{\mathrm{q}}}
$$

Consequently: since $n^{-3 / 2} V_{n} \rightarrow \mathcal{V}\left(\Upsilon^{\uparrow}\right)(1)$, we get

$$
\frac{\log \left|\overline{\operatorname{Ball}}_{r}^{\mathrm{FPP}}\left(\mathfrak{M}_{\infty}^{\dagger}\right)\right|}{r}=\frac{\log U_{r}}{r} \cdot \frac{\log V_{U_{r}}}{\log U_{r}} \xrightarrow[r \rightarrow \infty]{(\mathbf{P})} \quad \frac{3}{2} \cdot \pi^{2} \mathrm{p}_{\mathrm{q}}=\frac{3 \pi^{2} \mathrm{p}_{\mathrm{q}}}{2}
$$

Pioneer points of the RW on the dual map

Pioneer points of the RW

$\max _{k \leq n} d\left(o, P_{n}\right) \lesssim n^{\frac{1}{2(a-1)}}$? Idea: peeling along the walk.
For any peeling algorithm: if $D_{n}^{+/-}$are the greatest/smallest distance from the origin to a vertex on the boundary of e_{n} the explored region after n peeling steps, then

$$
\overline{\operatorname{Ball}}_{D_{n}^{-}}\left(\mathfrak{M}_{\infty}\right) \subset e_{n} \subset \overline{\operatorname{Ball}}_{D_{n}^{+}}\left(\mathfrak{M}_{\infty}\right) .
$$

Taking the volume:

$$
\left(D_{n}^{-}\right)^{2 a-1} \lesssim n^{\frac{a-1 / 2}{a-1}} \lesssim\left(D_{n}^{+}\right)^{2 a-1}, \quad \text { i.e. } \quad D_{n}^{-} \lesssim n^{\frac{1}{2(a-1)}} \lesssim D_{n}^{+}
$$

Furthermore,

$$
D_{n}^{+}-D_{n}^{-} \leq \operatorname{aper} \mathfrak{M}_{\infty}^{\left(\partial e_{n}\right)} \lesssim\left|\partial e_{n}\right|^{1 / 2} \approx n^{\frac{1}{2(a-1)}} \quad \text { so } \quad D_{n}^{-} \approx n^{\frac{1}{2(a-1)}}
$$

Application with the peeling along the walk:

- Greatest distance to the origin of a pioneer point after n peeling steps $\approx n^{\frac{1}{2(a-1)}}$.
- Peeling only when the walk sits a pioneer point; logarithmic vertex-degrees $\Longrightarrow \approx n$ peeling steps when reaching the n-th pioneer point.

Sub-diffusivity of the RW

$$
N_{R}=\# \text { steps to exit } \operatorname{Ball}_{R}\left(\mathfrak{M}_{\infty}\right) \gtrsim R^{\beta} ? \quad(\beta \geq 2)
$$

General strategy: find a subset of edges $\mathcal{C}_{R} \subset \operatorname{Ball}_{R}\left(\mathfrak{M}_{\infty}\right) \backslash \operatorname{Ball}_{R / 2}\left(\mathfrak{M}_{\infty}\right)$ such that

- $\left|\mathfrak{C}_{R}\right| \gtrsim R^{\gamma}$;
- The walk has to traverse \mathfrak{C}_{R} to exit $\operatorname{Ball}_{R}\left(M_{\infty}\right)$;
- The walk flashed on \mathfrak{C}_{R} is diffusive;
- \mathfrak{C}_{R} defined in an 'ergodic' way, so $\mathbf{P}\left(k\right.$-th step $\left.\in \mathfrak{C}_{R}\right)=\mathbf{P}\left(\right.$ root-edge $\left.\in \mathfrak{C}_{R}\right)$;
- $\mathrm{P}\left(\right.$ root-edge $\left.\in \mathfrak{C}_{R}\right) \lesssim R^{-\delta}$;

Then after N steps, the number of steps in \mathfrak{C}_{R} is $\lesssim N \cdot R^{-\delta}$; but when exiting $\operatorname{Ball}_{R}\left(\mathfrak{M}_{\infty}\right)$, the walk has made $\gtrsim R^{2 \gamma}$ steps in \mathfrak{C}_{R} so

$$
N_{R} \gtrsim R^{2 \gamma+\delta}
$$

In our cases, $2 \gamma+\delta=3$.

Further questions

Discrete infinite maps:

- Exact value for sub-diffusive exponent? both on \mathfrak{M}_{∞} and $\mathfrak{M}_{\infty}^{\dagger}$.
- Transience of $\mathfrak{M}_{\infty}^{\dagger}$ for $a \geq 2$?

Scaling limits:

- $n^{-1 /(2 a-1)} \mathfrak{M}_{\infty} \rightarrow \mathfrak{M}$ along subsequences [Le Gall \mathcal{E} Miermont '11, © ' '18]. Uniqueness of the limit? 'stable map'
- $n^{-(a-1 / 2) /(a-2)} \mathfrak{M}_{\infty}^{\dagger} \rightarrow \mathfrak{M}^{\dagger}$? 'stable sphere'

