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Abstract
In recent work (Barish & Suyama; in preparation) we extended Avi Wigderson’s 1982 NP -completeness
proof [7] for deciding the existence of Hamiltonian cycles on planar 3-vertex-connected triangulations, and
obtained many-one counting (“weakly parsimonious”) reductions from #SAT to the problem of counting
Hamiltonian paths, simple cycles, and simple paths on this class of graphs. Here, we discuss some of the
more interesting challenges that arose in constructing these reductions, and examine techniques for finding
as well as proving generating functions, closed-form expressions, and (where possible) analytic expressions
for the number of simple cycles and simple paths on infinite families of “sliced” planar 3-vertex-connected
triangulations having bounded pathwidth.

Deciding the Existence of and Counting Hamiltonian Cycles & Paths on
Planar 3-Vertex-Connected Triangulations

The Case of Hamiltonian Cycles (Almost Entirely Due to Wigderson [7])
Wigderson’s proof [7] for theNP -completeness of the Hamiltonian cycle decision problem on planar 3-vertex-
connected triangulations (i.e. maximal planar 3-vertex-connected graphs) actually provides a many-one count-
ing reduction from counting Hamiltonian cycles on planar cubic (i.e. 3-valent) 3-vertex-connected graphs —
which can easily be shown to be #P -complete via minor modifications of an existing many-one counting
reduction from #3SAT to counting Hamiltonian cycles on planar cubic 2-vertex-connected graphs [5] — to
counting Hamiltonian cycles on planar 3-vertex-connected triangulations. However, we need to briefly note
the existence of a minor error in Wigderson’s proof wherein he mistakenly states that, beginning with an n
vertex planar cubic 3-vertex-connected graph, the reduction construct will have 26 = 64n Hamiltonian cycles
per Hamiltonian cycle in the original graph; the actual amplification factor is 27 = 128n due to there being
another Hamiltonian cycle trajectory through the left-hand-side graph shown in Wigderson’s “Figure 6” [7].

The Case of Hamiltonian Paths
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Figure 1: Scheme for the #(Hamiltonian Cycle) ≤m #(Hamiltonian Path) reduction.

To reduce the problem of counting Hamiltonian cycles to the problem of counting Hamiltonian paths on pla-
nar 3-vertex-connected triangulations, take any copy of Wigderson’s “Graph K” (illustrated in “Figure 1” of
Wigderson’s proof [7] as well as in the above Figure 1) and perform the surgery illustrated in Figure 1 where
we delete the dashed edges in our illustration of Wigderson’s “Graph K” and identify the {x, y, z} vertices
of the resulting graph as the {x, y, z} vertices of the left-hand-side gadget (found by scanning non-isometric
planar graphs generated using Brinkmann and McKay’s ‘plantri’ software [1]). A straightforward analysis —
e.g. observing that all Hamiltonian cycles flowing through Wigderson’s “Graph K” traverse the {x, z} edge
in our Figure 1 illustration of this same graph — shows that this will create exactly 28 = 256 Hamiltonian
paths (where both path ends are necessarily embedded internal to the left-hand-side gadget from Figure 1) per
Hamiltonian cycle in the original graph, and eliminate all Hamiltonian cycles. Putting everything together, we
have that there exists a many-one counting reduction from #3SAT to the problem of counting Hamiltonian
paths on planar 3-vertex-connected triangulations.

Counting Simple Cycles and Simple Paths on Planar 3-Vertex-
Connected Triangulations
In the context of this poster we will not fully reconstruct our many-one counting reduction from #SAT to
counting simple cycles and simple paths on planar 3-vertex-connected triangulations, as the proof in (Barish &
Suyama; in preparation) is > 10 pages in length and involves highly technical modifications of Wigderson’s
1982 NP -completeness proof construction [7]. That said, we can elaborate on the “gadgeteering” part of this
work, which arguably took on a life of its own. Here, we required an infinite family of graph gadgets — identi-
fiable with selected faces in the triangulation given by a modified version of the Wigderson proof construction
[7] — which: (Criterion 1) allowed us to ensure that the cardinality of the set of simple cycles or simple paths
of length L, where L is the number of vertices in the graph prior to gadget identification surgeries, is larger
than the cardinality of the set of simple cycles or simple paths of length (L− 1) by a factor that scales expo-
nentially with a polynomially increasing gadget vertex count; (Criterion 2) allowed us to efficiently determine
(in polynomial time) how many length L simple cycles (resp. length L simple paths) there are per Hamilto-
nian cycle (resp. Hamiltonian path) in the original graph, allowing us to recover the original Hamiltonian
cycle (resp. Hamiltonian path) counts via integer division. This, in turn, required us to determine closed-form
(and when possible, analytic) expressions for all possible manners in which simple cycles and simple paths
can ingress and egress the aforementioned gadget, which we refer to as “path amplification factors”. For our
infinite family of graph gadgets, we chose the infinite family of “sliced” planar 3-vertex-connected triangula-
tions shown in Figure 2. In consideration of the bounded pathwidth of the Figure 2 triangulation, we ask the
reader to observe that Courcelle’s theorem and its extensions only yields a guarantee for (Criterion 2).
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Figure 2: Illustration of an infinite family of “sliced” planar 3-vertex-connected triangulations having
pathwidth and treewidth exactly 4 iff there are at least two layers (otherwise the pathwidth and treewidth will

be exactly 2). Note that pathwidth is equal to the vertex separation number of a graph [4], and that the
provided vertex linear ordering achieves the minimum vertex separation number.

Characterization of Path Amplification Factors for the Figure 2 Triangulation
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α1 α2 β1 β2 β3 β4 γ1 γ2 STOP END

α1 9 2 0 0 0 0 0 0 6 2
α2 3 0 0 0 0 0 0 0 2 1
β1 18 4 10 12 8 2 0 0 13 5
β2 3 0 2 2 2 0 0 0 2 1
β3 3 0 4 2 1 0 0 0 3 2
β4 0 0 2 0 0 0 0 0 1 1
γ1 6 0 12 8 6 0 9 2 5 3
γ2 0 0 4 0 0 0 3 0 1 1
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Traversal Type

Inner Layer (r+1) Traversal Type
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Figure 3: (Top) Illustration of all possible manners in which a simple path can ingress and egress a layer
of the “sliced” planar 3-vertex-connected triangulation shown in Figure 2 starting from an outer layer; “con-
cave diamond” shaped vertices illustrate the position of path ends. (Bottom) State transition matrix where
integer values correspond to the number of ways a path traversing an outer layer via one of the transition
types {α1, α2, β1, β2, β3, β4, γ1, γ2} (row labels) may ingress into (and possibly egress from) the next layer via
one of the transition types {α1, α2, β1, β2, β3, β4, γ1, γ2} (column labels); transitions to “STOP” correspond
to instances where paths do not ingress all layers of the relevant instance of the Figure 2 triangulation, and
transitions to “END” correspond to instances where paths ingress all layers of the relevant instance of the
Figure 2 triangulation.

If one enumerates all paths in the Directed Acyclic Graph (DAG) associated with the state transition matrix
from Figure 3(Bottom), assigns integer weights to the edges of the paths based on the transitions they corre-
spond to in the matrix, and sums over the products of the edge weights for each path, then one can generate
the path amplification factors for {α1, α2, β1, β2, β3, β4, γ1, γ2} traversals out to ≈ 30 layers on a standard
personal computer. After performing the aforementioned computation, we utilized the ‘guessPRec[]’ algo-
rithm due to Hebisch and Rubey [2], running in the context of the FriCAS (version 1.2.4) fork of Axiom [3],
to guess recurrence relations (more specifically, linear recurrence relation with polynomial coefficients) for
each path amplification factor, then invoked the Mathematica (version 10.4.1) ‘RSolve[]’ algorithm [8] to find
closed-form expressions. We also utilized Doron Zeilberger’s ‘guessHolo[]’ algorithm [9] to find (holonomic)
generating functions for each path amplification factor. In the below summary of our calculations, when listing
explicit integer values for each path amplification factor we (Bold) the minimum number of terms necessary
for the ‘guessPRec[]’ routine to find a recurrence, and highlight in (purple) the minimum number of additional
terms required for the ‘guessHolo[]’ algorithm to yield a generating function.
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Inductive Proofs of Closed-Form Expressions for Path Amplification Factors
We can prove the analytic or closed-form expressions for the path amplification factors by establishing the
below equalities using a computer algebra system; we utilized Mathematica 10.4.1 [8].
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Inductive Proofs of Generating Functions for Path Amplification Factors
We can prove the generating functions for our path amplification factors by establishing the below equalities
with a computer algebra system. We again utilized Mathematica 10.4.1 [8], though unlike in the case of prov-
ing our closed-form expressions, with some “hand-holding” almost any computer algebra system should be
up to the task (e.g. SageMath [6] or even Maxima). Note that coefficients of the power series expansion about
x = 0 for the (red) “adjustment” terms are equal to zero up to all orders.

G(α1) × x
−1 = 9G(α1) + 2G(α2) +

(
−6
x−1

)
+
(

2
x

)
G(α2) × x

−1 = 3G(α1) +
(
−2
x−1

)
+
(

1
x

)
G(β1) × x

−1 = 18G(α1) + 4G(α2) + 10G(β1) + 12G(β2) + 8G(β3) + 2G(β4) +
(
−13
x−1

)
+
(

5
x

)
G(β2) × x

−1 = 3G(α1) + 2G(β1) + 2G(β2) + 2G(β3) +
(
−2
x−1

)
+
(

1
x

)
G(β3) × x

−1 = 3G(α1) + 4G(β1) + 2G(β2) + G(β3) +
(
−3
x−1

)
+
(

2
x

)
G(β4) × x

−1 = 2G(β1) +
(
−1
x−1

)
+
(

1
x

)
G(γ1) × x

−1 = 6G(α1) + 12G(β1) + 8G(β2) + 6G(β3) + 9G(γ1) + 2G(γ2) +
(
−5
x−1

)
+
(

3
x

)
G(γ2) × x

−1 = 4G(β1) + 3G(γ1) +
(
−1
x−1

)
+
(

1
x

)

Closed-Form Expressions of Simple Cycle and Simple Path Counts
Letting q be the number of layers of the “sliced” planar 3-vertex-connected triangulation shown in Figure 2,
we can write down analytic expression and closed-form expressions, respectively, for the number of simple
cycles (Φcycles) and the number of simple paths (Φpaths) in the triangulation.
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Primary Findings (Barish & Suyama; in preparation)
(Finding 1): Deciding the existence of a Hamiltonian path on a planar 3-vertex-connected triangulation is
NP -complete.

(Finding 2): There exists a many-one counting reduction from #SAT to the problem of counting Hamilto-
nian paths, simple cycles, and simple paths on planar 3-vertex-connected triangulations.
=⇒ Counting these objects is #P -complete under many-one counting (“weakly parsimonious”) reductions.
=⇒ No Fully Polynomial-time Randomized Approximation Scheme (FPRAS) unless NP = RP .

(Finding 3): Existence of an analytic expression for the number of simple cycles in the family of “sliced”
planar 3-vertex-connected triangulations illustrated in Figure 2.

(Finding 4): Existence of a closed-form expression for the number of simple paths in the family of “sliced”
planar 3-vertex-connected triangulations illustrated in Figure 2 (the determination of which is likely at the
edge of what’s possible with a modern computer algebra system like Mathematica or Maple).
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