Counting Injective Walks on Triangulations

Robert D．Barish \＆Akira Suyama

The University of Tokyo，Graduate School of Arts and Sciences
3－8－1 Komaba，Meguro－ku，Tokyo 153－8902，Japan
rbarish＠genta．c．u－tokyo．ac．jp

Abstract

In recent work（Barish \＆Suyama；in preparation）we extented Avi Wigderson＇s $1982 N P$－completeness
proof $[7]$ for deciding the existence of Hamiltonian cycles on planar 3 －vertex－connected triangulations，and obtained many－one counting＂＂weakly parsimonious＂）reductions from \＃SAT to the problem of counting

Deciding the Existence of and Counting Hamiltonian Cycles \＆Paths on Planar 3－Vertex－Connected Triangulations
The Case of Hamiltonian Cycles（Almost Entirely Due to Wigderson［7］）

 which can easily be shown to be $\# P$－complete via minor modifications of an existing many－one counting
reduction from $\# S S A T$ to counting Hamiltonian cycles on planar cubic 2 －vertex－conected graphs $[5]-$ to reduction from $\# S$ S A To counting Hamiltonian cycles on planar cubic 2 －vertex－connected graphs $[5]-$ to
counting Hamiltonian cycles on planar 3 －vertex－connected triangulations．However，we need to briefly note the exixtence of a m mino errror in Wiigderson＇s proof whereiein he e mistateknly states that beginning with an n
vertex planar cubic 3 －verte－connected graph，the reduction constuct will have $26=64^{n}$ Hamitonian cycles vertex planar cubic 3 －vertex－connected graph，the reduction construct will have $2^{6}=61^{n}$ Hamiltonian cycle
per Hamitonian cycle in the original graph；the actual amplification factor is $2^{7}=128^{n}$ due to there being per Hamiltonian cycle in the original graph；the actual amplification factor is is $2^{t}=128^{n}$ due to there being
another Hamiltonian cyyle trajectory through the elet－hand－side graph shown in Wigderson＇s＂Figure 6 ＂ 77 ．
The Case of Hamiltonian Paths

To reduce the problem of counting Hamiltonian cycles to the problem of counting Hamiltonian paths on pla－
nar 3 －vertex－connected triansulationss take any copy of Wigderson＇s＂Graph K ＂（illustrated in＂Fisure 1 ＂of

Counting Simple Cycles and Simple Paths on Planar 3－Vertex－ Connected Triangulations
In the context of this poster we will not fully reconstruct our many－one counting reduction from \＃SAT to counting simple cycles and simple paths on planar 3－vertex－comnected triangulations，as the proof in（Barish \＆
Suyama；in preparation）is >10 pages in lengt and involves highly technical modifications of Wigderson＇s $1982 N P$－completeness proof construction［7］．That said，we can elaboratie on the＂gadgeteering＂＂part of this work，which arguably took on a life of itsown．Here，we required dan infinitit family of graph gadgets－identi－
fable with selected faces in the triangulation given by a modified version of the Wigderson proof constructio
 of tength L ，where L is the number of veritices in the graph prior to gadget identification surgeries，is arger
than the cardinality of the set of simple cycles or simple paths of length $(L-1)$ by a tactor that scales expe
 （in polynomiar ime how many length L simple cycles（resp．length L simple paths）there are per Hamilto
nian cycle（resp．Hamiltonian path）

 infnitit family of graph gadgets，we chose the infinitit family of＂sliced＂＂planar 3－vertex－connected trianyula
tions shown in Figure 2 ．In consideration of the bounded pathwidt of the Figure 2 trianoulation，we ask the tions shown in Figure 2．In consideration of he bounded patwwidh of he figure e trianguation，we and
reader to observe that Courcelle＇s theorem and its extensions only yields a guarante for（Criterion 2）．

Figure 2：Illustration of an infinite family of＂sliced＂planar 3－vertex－comnected triangulations having

Characterization of Path Amplification Factors for the Figure 2 Triangulation

Inner Layer（ $(r+1)$ Traversal Type

Figure 3：（Top）Illustration of all possible manners in which a simple path can ingress and egress a laye
of the sticed＂planar 3 －vertex－connected triangulation shown in Figure 2 statring from an outer layer，＂con of the＂siced＂＂planar 3－vertex－connected triangulation shown in Figure 2 starting from an outer layer＂con－
cauve diamond＂shaped vertices illustrate ethe position of path ends．（Bottom）State transition matrix where

 transitions to＂END＂correspond to instances where paths ingress all layers of the relevant instance of the
Figure 2 triangulation．

If one enumerates all paths in the Directed Acyclic Craph（DAG）associated with the state transition matrix
from Figure 3 （Botom），assign integer weights to the edges of the paths based on the transitions they corre－ from Figure 3（Bottom），assigns integer weights to the edges of the paths based on the transitions they corre－
spond toin ine matrix，and sumsover
the pe protucts of the edge weights for each path，then one can generat the path amplification factors for $\left\{\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{1}, \gamma_{1}, \gamma_{2}\right\}$ traversals out to ≈ 30 layers on a standard
personal computer．After performing the aforementioned computation，we utilized the gevessPRecl｜algo
 to guess recurrence relations（more specifically，linear recurrence relation with polynomial coefficients）for
each path amplification factor，then invoked the Mathematica（version 10.4 .1$)$ RSolve［］algorithm $[8]$ to find

$$
\begin{aligned}
& \Psi_{\text {pathss }(\alpha) \mid}[q]=\left(\frac{1}{105(\sqrt{105}+9)}\right)\left((29 \sqrt{105}+285)\left(\frac{1}{2}(\sqrt{105}+9)\right)^{q}+\right. \\
& \left.(11 \sqrt{105}+75)\left(\frac{1}{2}(9-\sqrt{105})\right)^{q}-75(\sqrt{105}+9)\right) \\
& \mathcal{G}_{(a)}=\sum_{n=0}^{\infty} a_{n} x^{n}=\left(\frac{2 x^{2}+6 x+2}{6 x^{2}+3 x^{2}-10 x+1}\right) \\
& =\begin{array}{l}
==0 \\
==(1 \text { to } 8) \rightarrow\{2,26,256,2470,23776,228814,2201992,21199822\}
\end{array}
\end{aligned}
$$

$\Psi_{\text {paths }_{2}\left(a_{2}[q]\right.}=\left(\frac{1}{70(\sqrt{105}+9)}\right)\left(4(\sqrt{105}+20)\left(\frac{\sqrt{105}}{2}+\frac{9}{2}\right)^{9}\right.$ $\left.(29 \sqrt{105}+305)\left(\frac{1}{2}(9-\sqrt{105})\right)^{q}-10(\sqrt{105}+9)\right)$ $\mathcal{G}_{\left(a_{2}\right)}=\left(\frac{3 x^{2}-2 x+1}{6 x^{3}+3 x^{2}-10 x+1}\right)$ $q=(1$ to 8$) \longrightarrow\{1,8,80,770,7412,71330,686444,6605978\}$
${ }^{\Psi_{p a t h s}\left(\beta_{1}\right)}$
$\mathcal{G}_{\left(\beta_{1}\right)}=\left(\frac{24 x^{5}+64 x^{4}-46 x^{3}-137 x^{2}+18 x+5}{48 x^{7} x^{2}-24 x^{6}-296 x^{5}-86 x^{4}+279 x^{3}+10 x^{2}-23 x+1}\right)$
$q=(1$ to 16$) \longrightarrow\{5,133,2417,40717,655761,10308655,159755201,2454455165,37509569681$
$571129943277,86841326849,13182415757949,1999412791034545,3030969542946125$,
З
$\mathcal{G}_{\left(\beta_{2}\right)}=\left(\frac{-3 x^{5} 5130 x^{4}+355^{3}+9 x^{2}+x+1}{48 x^{7}-24 x^{6}-296 x^{5}-86 x^{4}+279 x^{3}+101 x^{2}-23 x+1}\right)$
$\underset{q=(1 t o 16) \rightarrow\{1,24,460,7912,128776,203672,31674424,487760648,746455676}{11378552528,1730513701408,2627912349816,39869978914408,60406818507144}$
91601063613696144,1387924790432
$\mathcal{G}_{\left(3_{3}\right)}=\left(\frac{68 x^{4}-18 x^{3}+137 x^{2}-13 x+2}{48 x^{7}-24 x^{6}-296 x^{5}-86 x^{4}+279 x^{3}+101 x^{2}-23 x+1}\right)$
$q=(1$ to 16$) \rightarrow\{2,33$, ，94， 12053,198158, ，3150085，49144710， 758126341,11615040766
$177193621125,265999966838,40950198919877,62134790534430,9421545861756101$

$\mathcal{G}_{\left(\beta_{4}\right)}=\left(\frac{104 x^{5}+180 x^{4}+84 x^{3}+15 x^{2}-12 x+1}{48 x^{7}-24 x^{6}-296 x^{5}-86 x^{4}+279 x^{3}+101 x^{2}-23 x+1}\right)$
$q=(1$ to 16$) \rightarrow\{1,11,267,4835,81435,1311523,20617371,319511043,4908910331$,
$75019139363,1426595886555,17388265368999,263648315155899,399882558206991$
$\Psi_{\text {paths }\left(c_{1}\right)}[q]=\ldots$（closed form exp．exists；contains ≤ 20592 polynomial kth root functions $\left.s\right)$
$\mathcal{G}_{(x)}=\left(\frac{-96 x^{7}-464 x^{6}-208 x^{5}+63 x^{4}+56 x^{3}-215 x^{2}-30 x-3}{288 x^{9}+288 x^{-}-2040 x^{7}-31566 x^{6}+1106 x^{x}+3303 x^{2}+429 x^{3}-302 x^{2}+32 x-1}\right)$

$\mathcal{G}_{(x 2)}=\left(\frac{432 x^{7}+1944 x^{6}+3116 x^{5}-7244^{4}+892 x^{3}-253 x^{2}+2 x-1}{288 x^{9}+28 x^{8}-2040 x^{7}-3156 x^{6}+1196 x^{5}+323 x^{4}+492 x^{3}-302 x^{2}+32 x-1}\right)$ $q=(1$ to 20）$\rightarrow\{1,30,911,19692,373799,6555866,10965411,1774146288,28127028537,439560377778$
 5638804876412811256, ， 8584406387962049937,1298074700875871029690,

Inductive Proofs of Closed－Form Expressions for Path Amplification Factors
We can prove the analytic or closed．form expressions for the path amplification factors by establishing the
below equalities using a computer algebra system；we utilized Mathematica 10.4 .1 ｜ 81 ．
$\Psi_{\text {paths } s\left(\alpha_{1}\right)}[q \rightarrow(q+1)]=9\left(\Psi_{p \text { paths }\left(\alpha_{1}\right)}[q]\right)+2\left(\Psi_{\text {paths }}\left(\alpha_{2}[q]\right)+6\right.$
$\Psi_{p \text { paths }\left(\alpha_{2}\right)}[q \rightarrow(q+1)]=3\left(\Psi_{p \text { paths }}\left(\alpha_{\mu} \mid q\right]\right)+2$
$\Psi_{\text {paths }}\left(\beta_{1} \mid q \rightarrow(q+1)\right]=18\left(\Psi_{\text {paths }}\left(\alpha_{1}\right)[q]\right)+4\left(\Psi_{\text {paths }}\left(\alpha_{2} \mid q\right)\right)+10\left(\Psi_{\text {paths }}\left(\beta_{1}\right)[q)+12\left(\Psi_{\text {paths }}\left(\beta_{2}[q]\right)\right.\right.$ $8\left(\Psi_{\text {puths }}\left(\beta_{3} /[q)\right)+2\left(\Psi_{\text {paths }}\left(\beta_{3}[q]\right)+13\right.\right.$

 $\Psi_{\text {puths }\left(\beta_{2}\right)}[q \rightarrow(q+1)]=2\left(\Psi_{\text {paths }}\left(\beta_{1}\right)[q)+1\right.$
 $\left.9\left(\Psi_{\text {paths }}\left(\sim_{1}\right)(q]\right)+2\left(\Psi_{\text {paths }}(2) \mid q\right]\right)+5$

Inductive Proofs of Generating Functions for Path Amplification Factors
We can prove the generating functions for our path amplification factors by establishing the below equalities
witha computer algebra system．We again utiized Mathematica 10.4 .18 ， 8 ，though unlike in the case of prov－
 $x=0$ for the（red）＂djijustmen＂terms are equal t zero up to all orders．
$\mathcal{G}_{(a)} \times x^{-1}=\mathcal{G}_{(a)]}+2 \mathcal{G}_{(a z)}+\left(\frac{-6}{x-1}\right)+\left(\frac{2}{x}\right)$
$\mathcal{G}_{\left(a_{2}\right)} \times x^{-1}=3 \mathcal{G}_{\left.(\alpha)_{1}\right)}+\left(\frac{-2}{x-1}\right)+\left(\frac{1}{x}\right)$
$\mathcal{G}_{\left(\beta_{1}\right)} \times x^{-1}=18 \mathcal{G}_{\left(\alpha_{1}\right)}+4 \mathcal{G}_{\left(a_{2}\right)}+10 \mathcal{G}_{\left(\beta_{1}\right)}+12 \mathcal{G}_{\left(\beta_{2}\right)}+8 \mathcal{G}_{\left(\beta_{3}\right)}+2 \mathcal{G}_{\left(\beta_{3}\right)}+\left(\frac{-13}{x-1}\right)+\left(\frac{5}{x}\right)$
$\mathcal{G}_{\left(\beta_{2}\right)} \times x^{-1}=3 \mathcal{G}_{\left(\alpha_{1}\right)}+2 \mathcal{G}_{\left(\beta_{1}\right)}+2 \mathcal{G}_{\left(\beta_{2}\right)}+2 \mathcal{G}_{\left(\beta_{3}\right)}+\left(\frac{-2}{x-1}\right)+\left(\frac{1}{x}\right)$
$\mathcal{G}_{\left(\beta_{3}\right)} \times x^{-1}=3 \mathcal{G}_{\left(\alpha_{1}\right)}+\mathcal{G}_{\left(\beta_{1}\right)}+2 \mathcal{G}_{\left(\beta_{2}\right)}+\mathcal{G}_{\left(\beta_{3}\right)}+\left(\frac{-3}{x-1}\right)+\left(\frac{2}{x}\right)$
$\mathcal{G}_{\left(\beta_{3}\right)} \times x^{-1}=2 \mathcal{G}_{\left(\beta_{3}\right)}+\left(\frac{-1}{x-1}\right)+\left(\frac{1}{x}\right)$
$\mathcal{G}_{((1))} \times x^{-1}=6 \mathcal{G}_{\left(\alpha_{1}\right)}+12 \mathcal{G}_{\left(\beta_{1}\right)}+8 \mathcal{G}_{\left(\beta_{2}\right)}+6 \mathcal{G}_{\left(\beta_{3}\right)}+9 \mathcal{G}_{\left(x_{1}\right)}+2 \mathcal{G}_{((2)}+\left(\frac{-5}{x-5}\right)+\left(\frac{3}{x}\right)$
$\mathcal{S}_{((2)} \times x^{-1}=4 \mathcal{G}_{\left(\mathcal{P}_{1)}\right)}+3 \mathcal{G}_{((x)}+\left(\frac{-1}{x-1}\right)+\left(\frac{1}{x}\right)$
Closed－Form Expressions of Simple Cycle and Simple Path Counts
Letting q be the number of layers of the＂sliced＂planar 3－vertex－connected triangulation shown in Figure 2 ，
we can write down analytic expression and closed－form expressions，respectively，for the number of simple we can write down analytic expression and closed－form expressions，respect．
cycles $\left(\Phi_{\text {celdes }}\right.$ and the number of simple paths Φ poths s in the triangulation．
$\Phi_{\text {cydes }}=21 \sum_{r=1}^{(q-1)} \Psi_{p \text { path }\left(\alpha_{1}\right)}(r]+9 \sum_{r=1}^{(q-1)}$
$\Rightarrow \Phi_{\text {cydes }}=\left(\frac{1}{490(\sqrt{105}+9)}\right)\left(4\left((101 \sqrt{105}+840)\left(\frac{1}{2}(\sqrt{105}+9)\right)^{q}-70(\sqrt{105}+9)\right)\right.$
$\left.(611 \sqrt{105}+5775)\left(\frac{1}{2}(9-\sqrt{105})\right)^{q}-2590(\sqrt{105}+9) q\right)$
$q=(1$ to 8$) \longrightarrow\{1,63,692,6799,65610,631625,6078700,58498539\}$

$\underset{\substack{r=1 \\ q=(1 t o 8)}\{6,396,9792,202890,3751950,64884828,1074862116,17306622222\}}{r=1}$
Primary Findings（Barish \＆Suyama；in preparation）
（Finding 1）：Deciding the existence of a Hamiltonian path on a planar 3 －vertex－connected triangulation is
（Finding 2）：There exists a many－one counting reduction from \＃SAT to the problem
nian paths，simple cycles，and simple paths on planar 3 －vertex－connected triangulations．
$\stackrel{\text { mian paths，simple cycles，and simple paths on planar } 3 \text {－vertex－connected triangulations．}}{\stackrel{\text { Counting thens objects is }}{ } \# P \text {－complete under man－－ne counting（weakly parsimonious＂）reductions．}}$
（Finding 3）：Existence of an analytic expression for the number of simple cycles in the family of＂sliced＂
（Finding 4）：Existence of a closed－form expression for the number of simple paths in the family of＂sliced＂ planar 3－vertex－connected triangulations illustrated in Figure 2 （the determination of which is likely at the

References
［1］G．Brinkmann and B．D．McKay．Fast generation of planar graphs．Match Commun．Math．Co．， $58(2)$ ：323－
［2］W．Hebisch and M．Rubey．Extended rate，more GFUN．J．Symb．Comput，46（8）：889－903， 2011.
［3］D．Joyner．Open source computer algebra systems：Axiom．ACM Communications in Computer Algebra．
42（1－2）；39－47，2008． ［4］N．G．Kinnersley．T．The
$42(6): 345-350,1992$.
［5］M．Liskiewicz，M．Ogiara，and S．Toda．The complexity of counting self－avoiding walks in subgraphs of
two－dimensional grids and hypercubes．Theoret．Comput．Sci， $304(1-3): 129-156$, 2003．
［6］W．A．Stein et al．Sage Mathematics Sofware（Version 7．2．）．The Sage Development Team，（2016）
［7］A．Wigderson．The complexity of the Hamiltonian circuit problem for maximal planar graphs．Princeto

${ }^{[9]}$ D．Zeilberger．The holonomic ansatz I．Foundations and applications to lottice path counting．Ann．Comb． ［9］D．Zeilberger．The h
$11(2): 27-239,2007$

