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General Overview

I Random continuous curves γ : [0,∞)→ Rd are important
objects.

I Typical example: Brownian motion (BM). But it’s a bit ideal.

I The curves I want to consider have strong interaction with the
past.

I Interest: Curves with self-repulsion, which are forbidden to
visit any place that has already been visited.

I Dimension dependent behavior:
I d = 1, Nothing interesting.
I d ≥ 4, Effect of “self-avoidance” on the curve becomes weak

so that the curve ends up with BM.
(Recall that BM is a simple curve iff d ≥ 4.)

I Interesting dimensions are d = 2, 3.
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General Overview

I The most interesting case is d = 3.

I We live in three dimensions.
I Recent big progress via conformal field theory for d = 2. The

techniques used there are not available for d = 3.

I Focus on d = 3. What can we do?

I Discretization: Consider a discrete random path and take its
scaling limit.

I Our choice of the discretization is loop-erased random walk
(LERW).

I LERW is the only model with self-repulsion that we can
analyze rigorously for d = 3.
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Setting and Question

I Loop-erased random walk (LERW) is the random simple path
obtained by erasing all loops chronologically from a simple
random walk path, which was originally introduced by Greg
Lawler in 1980.

I Focus on 3D LERW in the talk, although the model also
enjoys interesting properties in other dimensions, especially in
2D via conformal field theory. Many elementary problems for
3D LERW still remains open.

I Interest: Scaling limit of 3D LERW.

I No similar procedure to erase loops from Brownian
motion!
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Setting and Question

I S (n) =
(
S (n)(k)

)
k≥0: SRW on 1

nZ
3 started at the origin.

I D = {x ∈ R3 : |x | < 1} : unit ball, D: its closure.

I T (n) = inf{k ≥ 0 : S (n)(k) /∈ D}: first exit time from D.

I γ(n) =
(
γ(n)(k)

)
k≥0 = LE

(
S (n)[0,T (n)]

)
: LERW on 1

nZ
3

started at the origin and stopped at ∂D.

I Another interpretation: LERW = Laplacian random walk.
Namely, for x ∼ γ(n)(k).

P
(
γ(n)(k + 1) = x

∣∣∣ γ(n)[0, k]
)

=
f (x)∑

y∼γ(n)(k) f (y)
.

Here f is discrete harmonic on
(
D ∩ 1

nZ
3
)
\ γ(n)[0, k] with

f ≡ 1 on ∂
(
D ∩ 1

nZ
3
)

and f ≡ 0 on γ(n)[0, k].

I Question: What is the scaling limit of γ(n) as n→∞? What
is the topology for the limit?
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Known results for 3D LERW

I Mn = len
(
γ(n)

)
: length (number of steps) of γ(n).

I (Lawler ’99): ∃c, ε > 0 s.t. for all n ≥ 1

cn1+ε ≤ E (Mn) ≤ 1

c
n

5
3 .

I
(
H(D), dHaus

)
: space of all non-empty compact subsets of D

with the Hausdorff distance dHaus.

I (Kozma ’07): As n→∞, γ(2
n) converges weakly to some

random compact set K w,r,t, the Hausdorff distance dHaus.

I Kozma shows that γ(2
n) is a Cauchy sequence w.r.t. the

Prokhorov metric. No nice tool like SLE to describe K!
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Known results for 3D LERW

I Problems:

– Is K a simple curve a.s.?
– What is the Hausdorff dimension of K?
– Time rescaled LERW

w−→ Time parametrized K
w.r.t. the uniform norm? How to parametrize K?

I (S. ’14) ∃β ∈ (1, 53 ] s.t.

E (Mn) = nβ+o(1) as n→∞.

Moreover, Mn
E(Mn)

is tight.

I (Wilson ’10) Simulation: β = 1.624± 0.001.

I (Sapozhnikov - S. ’15) W.p.1, K is homeomorphic to [0, 1].

I (S. ’16) W.p.1, dim(K) = β.
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I (Wilson ’10) Simulation: β = 1.624± 0.001.

I (Sapozhnikov - S. ’15) W.p.1, K is homeomorphic to [0, 1].

I (S. ’16) W.p.1, dim(K) = β.
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Main Results

Theorem (Li - S. ’18)

There exist universal c0 > 0, δ > 0 such that

E (M2n) = c02βn
{

1 + O
(
2−δn

)}
as n→∞.

I From this theorem, M2n/2βn is tight.
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Main Results

I Let ηn be the time rescaled γ(2
n) defined by

ηn(t) = γ(2
n)
(
2βnt

)
for 0 ≤ t ≤ M2n/2βn,

where we assume the linear interpolation for γ(2
n).

I Want to show ηn converges weakly to suitably parametrized K
w.r.t. the uniform norm. How to parametrize K?

I Let
µn = 2−βn

∑
x∈γ(2n)∩2−nZ3

δx

be the normalized counting measure on γ(2
n) where δx stands

for the Dirac measure at x .

I ηn =
(
γ(2

n) parametrized by µn
)

.
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Main Results

I Recall
(
H(D), dHaus

)
stands for the space of compact subsets

of D with the Hausdorff distance dHaus.

I Let M(D) be the space of finite measures on D endowed with
the weak convergence topology.

Theorem (Li - S. ’18 work in progress)

As n→∞, (γ(2
n), µn) converges weakly to some (K, µ) w.r.t. the

product topology of H(D) andM(D), where K is Kozma’s scaling
limit. Furthermore, the measure µ is a measurable function of K.
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Main Results

Theorem (Li - S. ’18 work in progress)

W.p.1, supp(µ) = K. Moreover, it follows that w.p.1, for each
x ∈ K

lim
y∈K
y→x

µ(Ky ) = µ(Kx),

where Ky is the curve in K between the origin and y ∈ K.

I Recall ηn is the time rescaled γ(2
n) defined by

ηn(t) = γ(2
n)
(
2βnt

)
for 0 ≤ t ≤ M2n/2βn.

I For each t ∈ [0, µ(K)], there exists unique xt ∈ K s.t.
t = µ(Kxt ). Define η(t) = xt for t ∈ [0, µ(K)].

I Take two continuous curves λi : [0, ti ]→ D (i = 1, 2). Let

ρ(λ1, λ2) = |t1 − t2|+ max
0≤s≤1

∣∣λ1(st1)− λ2(st2)
∣∣

be the supremum distance of them.
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Main Results

Theorem (Li - S. ’18 work in progress)

As n→∞, ηn converges weakly to η w.r.t. the metric ρ.

I Remark: The same convergence results w.r.t. the supremum
distance ρ hold for other dimensions:

I (Lawler 1991) For d ≥ 5, ∃cd > 0 s.t. γ(n)
(
cdn

2t
)
→ BM.

I (Lawler 1993) For d = 4, ∃c4 > 0 s.t.

γ(n)
(
c4n

2(log n)−
1
3 t
)
→ BM.

I (Lawler-Viklund 2017) For d = 2, ∃c2 > 0 s.t.

γ(n)
(
c2n

5
4 t
)
→ γ where γ is SLE2 parametrized by

5/4-dimensional Minkowski content.
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Main Results

I Let λn := LE
(
S (2n)[0,∞)

)
be the infinite loop-erased

random walk on 2−nZ3 started at the origin.

I For two continuous curves ζi : [0,∞)→ R3 (i = 1, 2), define

χ(ζ1, ζ2) =
∞∑
k=1

2−k max
0≤t≤k

min
{∣∣ζ1(t)− ζ2(t)

∣∣, 1}.
Theorem (Li - S. ’18 work in progress)

There exists a random continuous curve λ : [0,∞)→ R3 such that
as n→∞, λn

(
2βn ·

)
converges weakly to λ with respect to the

metric χ.
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What are η and λ?

A big challenging problem is to find a “nice” way to describe η and
λ.
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Thank you for your attention!
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