Natural parametrization for the scaling limit of loop-erased random walk in three dimensions

Daisuke Shiraishi, Kyoto University joint work with Xinyi Li (University of Chicago)

November 2018, Nagoya University

General Overview

- Random continuous curves $\gamma:[0, \infty) \rightarrow \mathbb{R}^{d}$ are important objects.

General Overview

- Random continuous curves $\gamma:[0, \infty) \rightarrow \mathbb{R}^{d}$ are important objects.
- Typical example: Brownian motion (BM). But it's a bit ideal.

General Overview

- Random continuous curves $\gamma:[0, \infty) \rightarrow \mathbb{R}^{d}$ are important objects.
- Typical example: Brownian motion (BM). But it's a bit ideal.
- The curves I want to consider have strong interaction with the past.

General Overview

- Random continuous curves $\gamma:[0, \infty) \rightarrow \mathbb{R}^{d}$ are important objects.
- Typical example: Brownian motion (BM). But it's a bit ideal.
- The curves I want to consider have strong interaction with the past.
- Interest: Curves with self-repulsion, which are forbidden to visit any place that has already been visited.

General Overview

- Random continuous curves $\gamma:[0, \infty) \rightarrow \mathbb{R}^{d}$ are important objects.
- Typical example: Brownian motion (BM). But it's a bit ideal.
- The curves I want to consider have strong interaction with the past.
- Interest: Curves with self-repulsion, which are forbidden to visit any place that has already been visited.
- Dimension dependent behavior:

General Overview

- Random continuous curves $\gamma:[0, \infty) \rightarrow \mathbb{R}^{d}$ are important objects.
- Typical example: Brownian motion (BM). But it's a bit ideal.
- The curves I want to consider have strong interaction with the past.
- Interest: Curves with self-repulsion, which are forbidden to visit any place that has already been visited.
- Dimension dependent behavior:
- $d=1$, Nothing interesting.

General Overview

- Random continuous curves $\gamma:[0, \infty) \rightarrow \mathbb{R}^{d}$ are important objects.
- Typical example: Brownian motion (BM). But it's a bit ideal.
- The curves I want to consider have strong interaction with the past.
- Interest: Curves with self-repulsion, which are forbidden to visit any place that has already been visited.
- Dimension dependent behavior:
- $d=1$, Nothing interesting.
- $d \geq 4$, Effect of "self-avoidance" on the curve becomes weak so that the curve ends up with BM.

General Overview

- Random continuous curves $\gamma:[0, \infty) \rightarrow \mathbb{R}^{d}$ are important objects.
- Typical example: Brownian motion (BM). But it's a bit ideal.
- The curves I want to consider have strong interaction with the past.
- Interest: Curves with self-repulsion, which are forbidden to visit any place that has already been visited.
- Dimension dependent behavior:
- $d=1$, Nothing interesting.
- $d \geq 4$, Effect of "self-avoidance" on the curve becomes weak so that the curve ends up with BM.
(Recall that BM is a simple curve iff $d \geq 4$.)

General Overview

- Random continuous curves $\gamma:[0, \infty) \rightarrow \mathbb{R}^{d}$ are important objects.
- Typical example: Brownian motion (BM). But it's a bit ideal.
- The curves I want to consider have strong interaction with the past.
- Interest: Curves with self-repulsion, which are forbidden to visit any place that has already been visited.
- Dimension dependent behavior:
- $d=1$, Nothing interesting.
- $d \geq 4$, Effect of "self-avoidance" on the curve becomes weak so that the curve ends up with BM. (Recall that BM is a simple curve iff $d \geq 4$.)
- Interesting dimensions are $d=2,3$.

General Overview

- The most interesting case is $d=3$.

General Overview

- The most interesting case is $d=3$.
- We live in three dimensions.

General Overview

- The most interesting case is $d=3$.
- We live in three dimensions.
- Recent big progress via conformal field theory for $d=2$. The techniques used there are not available for $d=3$.

General Overview

- The most interesting case is $d=3$.
- We live in three dimensions.
- Recent big progress via conformal field theory for $d=2$. The techniques used there are not available for $d=3$.
- Focus on $d=3$. What can we do?

General Overview

- The most interesting case is $d=3$.
- We live in three dimensions.
- Recent big progress via conformal field theory for $d=2$. The techniques used there are not available for $d=3$.
- Focus on $d=3$. What can we do?
- Discretization: Consider a discrete random path and take its scaling limit.

General Overview

- The most interesting case is $d=3$.
- We live in three dimensions.
- Recent big progress via conformal field theory for $d=2$. The techniques used there are not available for $d=3$.
- Focus on $d=3$. What can we do?
- Discretization: Consider a discrete random path and take its scaling limit.
- Our choice of the discretization is loop-erased random walk (LERW).

General Overview

- The most interesting case is $d=3$.
- We live in three dimensions.
- Recent big progress via conformal field theory for $d=2$. The techniques used there are not available for $d=3$.
- Focus on $d=3$. What can we do?
- Discretization: Consider a discrete random path and take its scaling limit.
- Our choice of the discretization is loop-erased random walk (LERW).
- LERW is the only model with self-repulsion that we can analyze rigorously for $d=3$.

Setting and Question

- Loop-erased random walk (LERW) is the random simple path obtained by erasing all loops chronologically from a simple random walk path, which was originally introduced by Greg Lawler in 1980.

Setting and Question

- Loop-erased random walk (LERW) is the random simple path obtained by erasing all loops chronologically from a simple random walk path, which was originally introduced by Greg Lawler in 1980.
- Focus on 3D LERW in the talk, although the model also enjoys interesting properties in other dimensions, especially in 2D via conformal field theory. Many elementary problems for 3D LERW still remains open.

Setting and Question

- Loop-erased random walk (LERW) is the random simple path obtained by erasing all loops chronologically from a simple random walk path, which was originally introduced by Greg Lawler in 1980.
- Focus on 3D LERW in the talk, although the model also enjoys interesting properties in other dimensions, especially in 2D via conformal field theory. Many elementary problems for 3D LERW still remains open.
- Interest: Scaling limit of 3D LERW.

Setting and Question

- Loop-erased random walk (LERW) is the random simple path obtained by erasing all loops chronologically from a simple random walk path, which was originally introduced by Greg Lawler in 1980.
- Focus on 3D LERW in the talk, although the model also enjoys interesting properties in other dimensions, especially in 2D via conformal field theory. Many elementary problems for 3D LERW still remains open.
- Interest: Scaling limit of 3D LERW.
- No similar procedure to erase loops from Brownian motion!

Picture credit: Fredrik Viklund.

Setting and Question

- $S^{(n)}=\left(S^{(n)}(k)\right)_{k \geq 0}:$ SRW on $\frac{1}{n} \mathbb{Z}^{3}$ started at the origin.

Setting and Question

- $S^{(n)}=\left(S^{(n)}(k)\right)_{k \geq 0}$: SRW on $\frac{1}{n} \mathbb{Z}^{3}$ started at the origin.
- $\mathbb{D}=\left\{x \in \mathbb{R}^{3}:|x|<1\right\}$: unit ball, $\overline{\mathbb{D}}$: its closure.

Setting and Question

- $S^{(n)}=\left(S^{(n)}(k)\right)_{k \geq 0}$: SRW on $\frac{1}{n} \mathbb{Z}^{3}$ started at the origin.
- $\mathbb{D}=\left\{x \in \mathbb{R}^{3}:|x|<1\right\}$: unit ball, $\overline{\mathbb{D}}$: its closure.
- $T^{(n)}=\inf \left\{k \geq 0: S^{(n)}(k) \notin \mathbb{D}\right\}:$ first exit time from \mathbb{D}.

Setting and Question

- $S^{(n)}=\left(S^{(n)}(k)\right)_{k \geq 0}$: SRW on $\frac{1}{n} \mathbb{Z}^{3}$ started at the origin.
- $\mathbb{D}=\left\{x \in \mathbb{R}^{3}:|x|<1\right\}$: unit ball, $\overline{\mathbb{D}}$: its closure.
- $T^{(n)}=\inf \left\{k \geq 0: S^{(n)}(k) \notin \mathbb{D}\right\}:$ first exit time from \mathbb{D}.
- $\gamma^{(n)}=\left(\gamma^{(n)}(k)\right)_{k \geq 0}=\operatorname{LE}\left(S^{(n)}\left[0, T^{(n)}\right]\right):$ LERW on $\frac{1}{n} \mathbb{Z}^{3}$ started at the origin and stopped at $\partial \mathbb{D}$.

Setting and Question

- $S^{(n)}=\left(S^{(n)}(k)\right)_{k \geq 0}$: SRW on $\frac{1}{n} \mathbb{Z}^{3}$ started at the origin.
- $\mathbb{D}=\left\{x \in \mathbb{R}^{3}:|x|<1\right\}$: unit ball, $\overline{\mathbb{D}}$: its closure.
- $T^{(n)}=\inf \left\{k \geq 0: S^{(n)}(k) \notin \mathbb{D}\right\}:$ first exit time from \mathbb{D}.
- $\gamma^{(n)}=\left(\gamma^{(n)}(k)\right)_{k \geq 0}=\operatorname{LE}\left(S^{(n)}\left[0, T^{(n)}\right]\right):$ LERW on $\frac{1}{n} \mathbb{Z}^{3}$ started at the origin and stopped at $\partial \mathbb{D}$.
- Another interpretation: LERW = Laplacian random walk. Namely, for $x \sim \gamma^{(n)}(k)$.

$$
P\left(\gamma^{(n)}(k+1)=x \mid \gamma^{(n)}[0, k]\right)=\frac{f(x)}{\sum_{y \sim \gamma^{(n)}(k)} f(y)} .
$$

Here f is discrete harmonic on $\left(\mathbb{D} \cap \frac{1}{n} \mathbb{Z}^{3}\right) \backslash \gamma^{(n)}[0, k]$ with $f \equiv 1$ on $\partial\left(\mathbb{D} \cap \frac{1}{n} \mathbb{Z}^{3}\right)$ and $f \equiv 0$ on $\gamma^{(n)}[0, k]$.

Setting and Question

- $S^{(n)}=\left(S^{(n)}(k)\right)_{k \geq 0}$: SRW on $\frac{1}{n} \mathbb{Z}^{3}$ started at the origin.
- $\mathbb{D}=\left\{x \in \mathbb{R}^{3}:|x|<1\right\}:$ unit ball, $\overline{\mathbb{D}}$: its closure.
- $T^{(n)}=\inf \left\{k \geq 0: S^{(n)}(k) \notin \mathbb{D}\right\}:$ first exit time from \mathbb{D}.
- $\gamma^{(n)}=\left(\gamma^{(n)}(k)\right)_{k \geq 0}=\operatorname{LE}\left(S^{(n)}\left[0, T^{(n)}\right]\right):$ LERW on $\frac{1}{n} \mathbb{Z}^{3}$ started at the origin and stopped at $\partial \mathbb{D}$.
- Another interpretation: LERW = Laplacian random walk. Namely, for $x \sim \gamma^{(n)}(k)$.

$$
P\left(\gamma^{(n)}(k+1)=x \mid \gamma^{(n)}[0, k]\right)=\frac{f(x)}{\sum_{y \sim \gamma^{(n)}(k)} f(y)} .
$$

Here f is discrete harmonic on $\left(\mathbb{D} \cap \frac{1}{n} \mathbb{Z}^{3}\right) \backslash \gamma^{(n)}[0, k]$ with $f \equiv 1$ on $\partial\left(\mathbb{D} \cap \frac{1}{n} \mathbb{Z}^{3}\right)$ and $f \equiv 0$ on $\gamma^{(n)}[0, k]$.

- Question: What is the scaling limit of $\gamma^{(n)}$ as $n \rightarrow \infty$? What is the topology for the limit?

Known results for 3D LERW

- $M_{n}=\operatorname{len}\left(\gamma^{(n)}\right)$: length (number of steps) of $\gamma^{(n)}$.

Known results for 3D LERW

- $M_{n}=\operatorname{len}\left(\gamma^{(n)}\right)$: length (number of steps) of $\gamma^{(n)}$.
- (Lawler '99): $\exists c, \epsilon>0$ s.t. for all $n \geq 1$

$$
c n^{1+\epsilon} \leq E\left(M_{n}\right) \leq \frac{1}{c} n^{\frac{5}{3}} .
$$

Known results for 3D LERW

- $M_{n}=\operatorname{len}\left(\gamma^{(n)}\right)$: length (number of steps) of $\gamma^{(n)}$.
- (Lawler '99): $\exists c, \epsilon>0$ s.t. for all $n \geq 1$

$$
c n^{1+\epsilon} \leq E\left(M_{n}\right) \leq \frac{1}{c} n^{\frac{5}{3}} .
$$

- $\left(\mathcal{H}(\overline{\mathbb{D}}), d_{\text {Haus }}\right)$: space of all non-empty compact subsets of $\overline{\mathbb{D}}$ with the Hausdorff distance $d_{\text {Haus }}$.

Known results for 3D LERW

- $M_{n}=\operatorname{len}\left(\gamma^{(n)}\right)$: length (number of steps) of $\gamma^{(n)}$.
- (Lawler '99): $\exists c, \epsilon>0$ s.t. for all $n \geq 1$

$$
c n^{1+\epsilon} \leq E\left(M_{n}\right) \leq \frac{1}{c} n^{\frac{5}{3}} .
$$

- $\left(\mathcal{H}(\overline{\mathbb{D}}), d_{\text {Haus }}\right)$: space of all non-empty compact subsets of $\overline{\mathbb{D}}$ with the Hausdorff distance $d_{\text {Haus }}$.
- (Kozma '07): As $n \rightarrow \infty, \gamma^{\left(2^{n}\right)}$ converges weakly to some random compact set $\mathcal{K} w, r, t$, the Hausdorff distance $d_{\text {Haus }}$.

Known results for 3D LERW

- $M_{n}=\operatorname{len}\left(\gamma^{(n)}\right)$: length (number of steps) of $\gamma^{(n)}$.
- (Lawler '99): $\exists c, \epsilon>0$ s.t. for all $n \geq 1$

$$
c n^{1+\epsilon} \leq E\left(M_{n}\right) \leq \frac{1}{c} n^{\frac{5}{3}} .
$$

- $\left(\mathcal{H}(\overline{\mathbb{D}}), d_{\text {Haus }}\right)$: space of all non-empty compact subsets of $\overline{\mathbb{D}}$ with the Hausdorff distance $d_{\text {Haus }}$.
- (Kozma '07): As $n \rightarrow \infty, \gamma^{\left(2^{n}\right)}$ converges weakly to some random compact set $\mathcal{K} w, r, t$, the Hausdorff distance $d_{\text {Haus }}$.
- Kozma shows that $\gamma^{\left(2^{n}\right)}$ is a Cauchy sequence w.r.t. the Prokhorov metric. No nice tool like SLE to describe \mathcal{K} !

Known results for 3D LERW

- Problems:

Known results for 3D LERW

- Problems:
- Is \mathcal{K} a simple curve a.s.?

Known results for 3D LERW

- Problems:
- Is \mathcal{K} a simple curve a.s.?
- What is the Hausdorff dimension of \mathcal{K} ?

Known results for 3D LERW

- Problems:
- Is \mathcal{K} a simple curve a.s.?
- What is the Hausdorff dimension of \mathcal{K} ?
- Time rescaled LERW \xrightarrow{w} Time parametrized \mathcal{K} w.r.t. the uniform norm? How to parametrize \mathcal{K} ?

Known results for 3D LERW

- Problems:
- Is \mathcal{K} a simple curve a.s.?
- What is the Hausdorff dimension of \mathcal{K} ?
- Time rescaled LERW \xrightarrow{w} Time parametrized \mathcal{K} w.r.t. the uniform norm? How to parametrize \mathcal{K} ?
- (S. '14) $\exists \beta \in\left(1, \frac{5}{3}\right]$ s.t.

$$
E\left(M_{n}\right)=n^{\beta+o(1)} \text { as } n \rightarrow \infty
$$

Moreover, $\frac{M_{n}}{E\left(M_{n}\right)}$ is tight.

Known results for 3D LERW

- Problems:
- Is \mathcal{K} a simple curve a.s.?
- What is the Hausdorff dimension of \mathcal{K} ?
- Time rescaled LERW \xrightarrow{w} Time parametrized \mathcal{K} w.r.t. the uniform norm? How to parametrize \mathcal{K} ?
- (S. '14) $\exists \beta \in\left(1, \frac{5}{3}\right]$ s.t.

$$
E\left(M_{n}\right)=n^{\beta+o(1)} \text { as } n \rightarrow \infty .
$$

Moreover, $\frac{M_{n}}{E\left(M_{n}\right)}$ is tight.

- (Wilson '10) Simulation: $\beta=1.624 \pm 0.001$.

Known results for 3D LERW

- Problems:
- Is \mathcal{K} a simple curve a.s.?
- What is the Hausdorff dimension of \mathcal{K} ?
- Time rescaled LERW \xrightarrow{w} Time parametrized \mathcal{K} w.r.t. the uniform norm? How to parametrize \mathcal{K} ?
- (S. '14) $\exists \beta \in\left(1, \frac{5}{3}\right]$ s.t.

$$
E\left(M_{n}\right)=n^{\beta+o(1)} \text { as } n \rightarrow \infty
$$

Moreover, $\frac{M_{n}}{E\left(M_{n}\right)}$ is tight.

- (Wilson '10) Simulation: $\beta=1.624 \pm 0.001$.
- (Sapozhnikov - S. '15) W.p.1, \mathcal{K} is homeomorphic to $[0,1]$.

Known results for 3D LERW

- Problems:
- Is \mathcal{K} a simple curve a.s.?
- What is the Hausdorff dimension of \mathcal{K} ?
- Time rescaled LERW \xrightarrow{w} Time parametrized \mathcal{K} w.r.t. the uniform norm? How to parametrize \mathcal{K} ?
- (S. '14) $\exists \beta \in\left(1, \frac{5}{3}\right]$ s.t.

$$
E\left(M_{n}\right)=n^{\beta+o(1)} \text { as } n \rightarrow \infty
$$

Moreover, $\frac{M_{n}}{E\left(M_{n}\right)}$ is tight.

- (Wilson '10) Simulation: $\beta=1.624 \pm 0.001$.
- (Sapozhnikov - S. '15) W.p.1, \mathcal{K} is homeomorphic to $[0,1]$.
- (S. '16) W.p.1, $\operatorname{dim}(\mathcal{K})=\beta$.

Main Results

Theorem (Li-S. '18)
There exist universal $c_{0}>0, \delta>0$ such that

$$
E\left(M_{2^{n}}\right)=c_{0} 2^{\beta n}\left\{1+O\left(2^{-\delta n}\right)\right\} \text { as } n \rightarrow \infty
$$

Main Results

Theorem (Li-S. '18)
There exist universal $c_{0}>0, \delta>0$ such that

$$
E\left(M_{2^{n}}\right)=c_{0} 2^{\beta n}\left\{1+O\left(2^{-\delta n}\right)\right\} \text { as } n \rightarrow \infty .
$$

- From this theorem, $M_{2^{n}} / 2^{\beta n}$ is tight.

Main Results

- Let η_{n} be the time rescaled $\gamma^{\left(2^{n}\right)}$ defined by

$$
\eta_{n}(t)=\gamma^{\left(2^{n}\right)}\left(2^{\beta n} t\right) \text { for } 0 \leq t \leq M_{2^{n}} / 2^{\beta n}
$$

where we assume the linear interpolation for $\gamma^{\left(2^{n}\right)}$.

Main Results

- Let η_{n} be the time rescaled $\gamma^{\left(2^{n}\right)}$ defined by

$$
\eta_{n}(t)=\gamma^{\left(2^{n}\right)}\left(2^{\beta n} t\right) \text { for } 0 \leq t \leq M_{2^{n}} / 2^{\beta n}
$$

where we assume the linear interpolation for $\gamma^{\left(2^{n}\right)}$.

- Want to show η_{n} converges weakly to suitably parametrized \mathcal{K} w.r.t. the uniform norm. How to parametrize \mathcal{K} ?

Main Results

- Let η_{n} be the time rescaled $\gamma^{\left(2^{n}\right)}$ defined by

$$
\eta_{n}(t)=\gamma^{\left(2^{n}\right)}\left(2^{\beta n} t\right) \text { for } 0 \leq t \leq M_{2^{n}} / 2^{\beta n}
$$

where we assume the linear interpolation for $\gamma^{\left(2^{n}\right)}$.

- Want to show η_{n} converges weakly to suitably parametrized \mathcal{K} w.r.t. the uniform norm. How to parametrize \mathcal{K} ?
- Let

$$
\mu_{n}=2^{-\beta n} \sum_{x \in \gamma^{\left(2^{n}\right)} \cap 2^{-n} \mathbb{Z}^{3}} \delta_{x}
$$

be the normalized counting measure on $\gamma^{\left(2^{n}\right)}$ where δ_{x} stands for the Dirac measure at x.

Main Results

- Let η_{n} be the time rescaled $\gamma^{\left(2^{n}\right)}$ defined by

$$
\eta_{n}(t)=\gamma^{\left(2^{n}\right)}\left(2^{\beta n} t\right) \text { for } 0 \leq t \leq M_{2^{n}} / 2^{\beta n}
$$

where we assume the linear interpolation for $\gamma^{\left(2^{n}\right)}$.

- Want to show η_{n} converges weakly to suitably parametrized \mathcal{K} w.r.t. the uniform norm. How to parametrize \mathcal{K} ?
- Let

$$
\mu_{n}=2^{-\beta n} \sum_{x \in \gamma^{\left(2^{n}\right)} \cap 2^{-n} \mathbb{Z}^{3}} \delta_{x}
$$

be the normalized counting measure on $\gamma^{\left(2^{n}\right)}$ where δ_{x} stands for the Dirac measure at x.

- $\eta_{n}=\left(\gamma^{\left(2^{n}\right)}\right.$ parametrized by $\left.\mu_{n}\right)$.

Main Results

- Recall $\left(\mathcal{H}(\overline{\mathbb{D}}), d_{\text {Haus }}\right)$ stands for the space of compact subsets of $\overline{\mathbb{D}}$ with the Hausdorff distance $d_{\text {Haus }}$.

Main Results

- Recall $\left(\mathcal{H}(\overline{\mathbb{D}}), d_{\text {Haus }}\right)$ stands for the space of compact subsets of $\overline{\mathbb{D}}$ with the Hausdorff distance $d_{\text {Haus }}$.
- Let $\mathcal{M}(\overline{\mathbb{D}})$ be the space of finite measures on $\overline{\mathbb{D}}$ endowed with the weak convergence topology.

Main Results

- Recall $\left(\mathcal{H}(\overline{\mathbb{D}}), d_{\text {Haus }}\right)$ stands for the space of compact subsets of $\overline{\mathbb{D}}$ with the Hausdorff distance $d_{\text {Haus }}$.
- Let $\mathcal{M}(\overline{\mathbb{D}})$ be the space of finite measures on $\overline{\mathbb{D}}$ endowed with the weak convergence topology.

Theorem (Li - S. '18 work in progress)
As $n \rightarrow \infty$, $\left(\gamma^{\left(2^{n}\right)}, \mu_{n}\right)$ converges weakly to some (\mathcal{K}, μ) w.r.t. the product topology of $\mathcal{H}(\overline{\mathbb{D}})$ and $\mathcal{M}(\overline{\mathbb{D}})$, where \mathcal{K} is Kozma's scaling limit. Furthermore, the measure μ is a measurable function of \mathcal{K}.

Main Results

Theorem (Li - S. '18 work in progress) W.p.1, $\operatorname{supp}(\mu)=\mathcal{K}$. Moreover, it follows that w.p.1, for each $x \in \mathcal{K}$

$$
\lim _{\substack{y \in \mathcal{K} \\ y \rightarrow x}} \mu\left(\mathcal{K}_{y}\right)=\mu\left(\mathcal{K}_{x}\right)
$$

where \mathcal{K}_{y} is the curve in \mathcal{K} between the origin and $y \in \mathcal{K}$.

Main Results

Theorem (Li - S. '18 work in progress) W.p.1, $\operatorname{supp}(\mu)=\mathcal{K}$. Moreover, it follows that w.p.1, for each $x \in \mathcal{K}$

$$
\lim _{\substack{y \in \mathcal{K} \\ y \rightarrow x}} \mu\left(\mathcal{K}_{y}\right)=\mu\left(\mathcal{K}_{x}\right)
$$

where \mathcal{K}_{y} is the curve in \mathcal{K} between the origin and $y \in \mathcal{K}$.

- Recall η_{n} is the time rescaled $\gamma^{\left(2^{n}\right)}$ defined by

$$
\eta_{n}(t)=\gamma^{\left(2^{n}\right)}\left(2^{\beta n} t\right) \text { for } 0 \leq t \leq M_{2^{n}} / 2^{\beta n}
$$

Main Results

Theorem (Li - S. '18 work in progress) W.p.1, $\operatorname{supp}(\mu)=\mathcal{K}$. Moreover, it follows that w.p.1, for each $x \in \mathcal{K}$

$$
\lim _{\substack{y \in \mathcal{K} \\ y \rightarrow x}} \mu\left(\mathcal{K}_{y}\right)=\mu\left(\mathcal{K}_{x}\right)
$$

where \mathcal{K}_{y} is the curve in \mathcal{K} between the origin and $y \in \mathcal{K}$.

- Recall η_{n} is the time rescaled $\gamma^{\left(2^{n}\right)}$ defined by

$$
\eta_{n}(t)=\gamma^{\left(2^{n}\right)}\left(2^{\beta n} t\right) \text { for } 0 \leq t \leq M_{2^{n}} / 2^{\beta n}
$$

- For each $t \in[0, \mu(\mathcal{K})]$, there exists unique $x_{t} \in \mathcal{K}$ s.t. $t=\mu\left(\mathcal{K}_{x_{t}}\right)$. Define $\eta(t)=x_{t}$ for $t \in[0, \mu(\mathcal{K})]$.

Main Results

Theorem (Li - S. '18 work in progress) W.p.1, $\operatorname{supp}(\mu)=\mathcal{K}$. Moreover, it follows that w.p.1, for each $x \in \mathcal{K}$

$$
\lim _{\substack{y \in \mathcal{K} \\ y \rightarrow x}} \mu\left(\mathcal{K}_{y}\right)=\mu\left(\mathcal{K}_{x}\right)
$$

where \mathcal{K}_{y} is the curve in \mathcal{K} between the origin and $y \in \mathcal{K}$.

- Recall η_{n} is the time rescaled $\gamma^{\left(2^{n}\right)}$ defined by

$$
\eta_{n}(t)=\gamma^{\left(2^{n}\right)}\left(2^{\beta n} t\right) \text { for } 0 \leq t \leq M_{2^{n}} / 2^{\beta n}
$$

- For each $t \in[0, \mu(\mathcal{K})]$, there exists unique $x_{t} \in \mathcal{K}$ s.t. $t=\mu\left(\mathcal{K}_{x_{t}}\right)$. Define $\eta(t)=x_{t}$ for $t \in[0, \mu(\mathcal{K})]$.
- Take two continuous curves $\lambda_{i}:\left[0, t_{i}\right] \rightarrow \overline{\mathbb{D}}(i=1,2)$. Let

$$
\rho\left(\lambda_{1}, \lambda_{2}\right)=\left|t_{1}-t_{2}\right|+\max _{0 \leq s \leq 1}\left|\lambda_{1}\left(s t_{1}\right)-\lambda_{2}\left(s t_{2}\right)\right|
$$

be the supremum distance of them.

Main Results

Theorem (Li - S. '18 work in progress)
As $n \rightarrow \infty, \eta_{n}$ converges weakly to η w.r.t. the metric ρ.

Main Results

Theorem (Li - S. '18 work in progress)
As $n \rightarrow \infty, \eta_{n}$ converges weakly to η w.r.t. the metric ρ.

- Remark: The same convergence results w.r.t. the supremum distance ρ hold for other dimensions:

Main Results

Theorem (Li - S. '18 work in progress)
As $n \rightarrow \infty, \eta_{n}$ converges weakly to η w.r.t. the metric ρ.

- Remark: The same convergence results w.r.t. the supremum distance ρ hold for other dimensions:
- (Lawler 1991) For $d \geq 5, \exists c_{d}>0$ s.t. $\gamma^{(n)}\left(c_{d} n^{2} t\right) \rightarrow \mathrm{BM}$.

Main Results

Theorem (Li - S. '18 work in progress)
As $n \rightarrow \infty, \eta_{n}$ converges weakly to η w.r.t. the metric ρ.

- Remark: The same convergence results w.r.t. the supremum distance ρ hold for other dimensions:
- (Lawler 1991) For $d \geq 5, \exists c_{d}>0$ s.t. $\gamma^{(n)}\left(c_{d} n^{2} t\right) \rightarrow \mathrm{BM}$.
- (Lawler 1993) For $d=4, \exists c_{4}>0$ s.t.

$$
\gamma^{(n)}\left(c_{4} n^{2}(\log n)^{-\frac{1}{3}} t\right) \rightarrow \mathrm{BM} .
$$

Main Results

Theorem (Li - S. '18 work in progress)
As $n \rightarrow \infty, \eta_{n}$ converges weakly to η w.r.t. the metric ρ.

- Remark: The same convergence results w.r.t. the supremum distance ρ hold for other dimensions:
- (Lawler 1991) For $d \geq 5, \exists c_{d}>0$ s.t. $\gamma^{(n)}\left(c_{d} n^{2} t\right) \rightarrow \mathrm{BM}$.
- (Lawler 1993) For $d=4, \exists c_{4}>0$ s.t.
$\gamma^{(n)}\left(c_{4} n^{2}(\log n)^{-\frac{1}{3}} t\right) \rightarrow \mathrm{BM}$.
- (Lawler-Viklund 2017) For $d=2, \exists c_{2}>0$ s.t. $\gamma^{(n)}\left(c_{2} n^{\frac{5}{4}} t\right) \rightarrow \gamma$ where γ is SLE $_{2}$ parametrized by 5/4-dimensional Minkowski content.

Main Results

- Let $\lambda_{n}:=\operatorname{LE}\left(S^{\left(2^{n}\right)}[0, \infty)\right)$ be the infinite loop-erased random walk on $2^{-n} \mathbb{Z}^{3}$ started at the origin.

Main Results

- Let $\lambda_{n}:=\operatorname{LE}\left(S^{\left(2^{n}\right)}[0, \infty)\right)$ be the infinite loop-erased random walk on $2^{-n} \mathbb{Z}^{3}$ started at the origin.
- For two continuous curves $\zeta_{i}:[0, \infty) \rightarrow \mathbb{R}^{3}(i=1,2)$, define

$$
\chi\left(\zeta_{1}, \zeta_{2}\right)=\sum_{k=1}^{\infty} 2^{-k} \max _{0 \leq t \leq k} \min \left\{\left|\zeta_{1}(t)-\zeta_{2}(t)\right|, 1\right\}
$$

Main Results

- Let $\lambda_{n}:=\operatorname{LE}\left(S^{\left(2^{n}\right)}[0, \infty)\right)$ be the infinite loop-erased random walk on $2^{-n} \mathbb{Z}^{3}$ started at the origin.
- For two continuous curves $\zeta_{i}:[0, \infty) \rightarrow \mathbb{R}^{3}(i=1,2)$, define

$$
\chi\left(\zeta_{1}, \zeta_{2}\right)=\sum_{k=1}^{\infty} 2^{-k} \max _{0 \leq t \leq k} \min \left\{\left|\zeta_{1}(t)-\zeta_{2}(t)\right|, 1\right\}
$$

Theorem (Li - S. '18 work in progress)
There exists a random continuous curve $\lambda:[0, \infty) \rightarrow \mathbb{R}^{3}$ such that as $n \rightarrow \infty, \lambda_{n}\left(2^{\beta n}\right.$.) converges weakly to λ with respect to the metric χ.

What are η and λ ?

A big challenging problem is to find a "nice" way to describe η and λ.

Thank you for your attention!

