Random volumes from matrices

Masafumi Fukuma

(Dept of Phys, Kyoto Univ)

Physics and Mathematics of Discrete Geometries @Nagoya, Nov 5-9, 2018

based on work with

Sotaro Sugishita (U Kentucky) & Naoya Umeda (PwC)

[arXiv:1503.08812] "Random volumes from matrices"

[arXiv:1504.03532] "Matter fields in triangle-hinge models"

[arXiv:1603.05199] "Triangle-hinge models for unoriented membranes"

[arXiv:181*.****] "Critical behavior of triangle-hinge models"

0. Introduction

String / M theory

<u>String theory</u> : strong candidate for the unified theory including 4D QG

[worldsheet picture]

2D QG + matters

(intrinsic metric) (target space coords) $h_{ab}(\xi) \qquad X^{\mu}(\xi)$

 $\left(\xi = (\xi^a) = (\tau, \sigma)\right)$

M theory : an approach to string theory: (super)membranes in 11D spacetime

[worldvolume picture]

3D QG + matters

 $h_{ab}(\xi)$

(intrinsic metric) (target space coords)

 $X^{\mu}(\xi) \qquad \left(\xi = (\xi^{a}) = (\tau, \sigma^{1}, \sigma^{2})\right)$

Strings and membranes (1/3)

	string	M
fundamental constituents	string	membrane
trajectory	worldsheet	worldvolume
system	<u>2D QG</u> + matters random surfaces	<u>3D QG</u> + matters random volumes
free energy log Z	$\sum_{\substack{\text{conn. triangular}\\ \text{decompositions}}} e^{-S}$	$\sum_{\substack{\text{conn. tetrahedral}\\ \text{decompositions}}} e^{-S}$

Strings and membranes (2/3)

random surfaces

generating model

matrix model

 $M = (M_{ij})$

$$S(M) = \frac{1}{2} \operatorname{tr} M^{2} - \frac{\lambda}{3} \operatorname{tr} M^{3}$$
$$= \frac{1}{2} M_{ij} M_{ji} - \frac{\lambda}{3} M_{ij} M_{jk} M_{ki}$$

Strings and membranes (3/3)

random surfaces

Strings and membranes (2'/3)

Strings and membranes (3'/3)

random surfaces random volumes

$$\left\langle T_{ijk} T_{lmn} \right\rangle_{0} = \frac{i}{k} \frac{n}{m} l \\ = \delta_{in} \delta_{jm} \delta_{kl} \\ \frac{i}{k} \frac{n}{k} \frac{$$

Analytic solvability of matrix models

Diagonalization:

$$M = UxU^{-1} \begin{pmatrix} x_1 & 0 \\ \ddots & \\ 0 & x_N \end{pmatrix}, \quad U \in U(N) \end{pmatrix}$$

$$(dM) = \left(\prod_{i=1}^N dx_i\right) (dU) \prod_{i < j} (x_i - x_j)^2$$

Effective action:

$$Z = \int \left(\prod_{i} dx_{i}\right) e^{-S_{\text{eff}}(x)} \quad \text{with} \quad S_{\text{eff}}(x) \equiv S(x) - 2\sum_{i < j} \ln \left|x_{i} - x_{j}\right|$$

Large *N* analysis can be performed with the saddle point method

Analytic solvability of matrix models

Diagonalization:

$$M = UxU^{-1} \quad \begin{pmatrix} x_1 & 0 \\ \vdots & \ddots & \\ 0 & x_N \end{pmatrix}, \quad U \in U(N) \end{pmatrix}$$

$$(dM) = \left(\prod_{i=1}^N dx_i\right) (dU) \prod_{i < j} (x_i - x_j)^2$$

Effective action:

$$Z = \int \left(\prod_{i} dx_{i}\right) e^{-S_{\text{eff}}(x)} \quad \text{with} \quad S_{\text{eff}}(x) \equiv S(x) - 2\sum_{i < j} \ln \left|x_{i} - x_{j}\right|$$

Large *N* analysis can be performed with the saddle point method

But, no such analogues in the aforementioned tensor models.

Analytic solvability of matrix models

Diagonalization:

$$M = UxU^{-1} \quad \begin{pmatrix} x_1 & 0 \\ \vdots & \ddots & \\ 0 & x_N \end{pmatrix}, \quad U \in U(N) \\ 0 & x_N \end{pmatrix}$$

$$(dM) = \left(\prod_{i=1}^N dx_i\right) (dU) \prod_{i < j} (x_i - x_j)^2$$

Effective action:

$$Z = \int \left(\prod_{i} dx_{i}\right) e^{-S_{\text{eff}}(x)} \quad \text{with} \quad S_{\text{eff}}(x) \equiv S(x) - 2\sum_{i < j} \ln \left|x_{i} - x_{j}\right|$$

Large N analysis can be performed with the saddle point method

But, no such analogues in the aforementioned tensor models.

We proposed a new class of "matrix models" which generate 3D random volumes. [MF-Sugishita-Umeda 2015]

Main idea (1/2)

Adhere to using <u>triangles</u> (instead of tetrahedra) as building blocks.

We decompose a tetrahedral decomposition further to a collection of triangles which are glued together along hinges.

[cf: Chung-MF-Shapere 1994 for 3D TFT]

Main idea (2/2)

One can then take matrices as dynamical variables:

Plan

0. Introduction (done)

1. The triangle-hinge models

- -- definition
- -- algebraic construction

2. General form of the free energy

- -- index network
- -- index functions
- 3. Matrix ring
 - -- Feynman diagrams
 - -- duality
- 4. Restricting to manifolds
- 5. Introducing matter fields
- 6. Recent developments
- 7. Conclusion and outlook

Plan

0. Introduction

1. The triangle-hinge models

- -- definition
- -- algebraic construction

2. General form of the free energy

- -- index network
- -- index functions
- 3. Matrix ring
 - -- Feynman diagrams
 - -- duality
- 4. Restricting to manifolds
- 5. Introducing matter fields
- 6. Recent developments
- 7. Conclusion and outlook

Definition

Dynamical variables

$$A = (A_{ij}), B = (B^{ij}) (i, j = 1, ..., N)$$
 : $N \times N$ real symmetric matrices

<u>Action</u>

$$S(A,B) = \frac{1}{2} A_{ij} B^{ij} - \frac{\lambda}{6} C^{(ij)(kl)(mn)} A_{ij} A_{kl} A_{mn} - \sum_{k \ge 3} \frac{\mu_k}{2k} Y_{(i_1 j_1) \cdots (i_k j_k)} B^{i_1 j_1} \cdots B^{i_k j_k}$$

Feynman rules

[propagator]

Symmetries of coupling constants

Cyclic symmetries:

$$C^{(ij)(kl)(mn)} = C^{(kl)(mn)(ij)}$$
, $Y_{(i_1j_1)(i_2j_2)\cdots(i_kj_k)} = Y_{(i_2j_2)\cdots(i_kj_k)(i_1j_1)}$

Flip symmetries:

Algebraic construction (2/3)

Algebraic construction (3/3)

We define triangle tensor *C* as:

$$C^{(ij)(kl)(mn)} \equiv g^{jk} g^{lm} g^{ni}$$

(cyclically symmetric)

k l

п

т

 \equiv

This satisfies flip relation (1):

 $C^{(ij)(kl)(mn)} = C^{(nm)(lk)(ji)}$

but is not a unique solution to it.

The latter fact is used to restrict configurations to nonsingular ones and to introduce matter fields into the TH models.

Summary of the algebraic construction

Given a semisimple associative algebra $\mathcal{A} = \bigoplus \mathbb{R} e_i$ $1 \le i \le N$ with structure constants $y_{ij}^{k} (e_i \times e_j = y_{ij}^{k} e_k)$ Introduce $\begin{cases} k\text{-tensor: } y_{i_1i_2\dots i_k} \equiv y_{i_1j_1}^{j_k} y_{i_2j_2}^{j_1} \cdots y_{i_kj_k}^{j_{k-1}} \\ \text{metric: } g_{ii} \equiv y_{ii} \implies (g^{ij}) \equiv (g_{ij})^{-1} \end{cases}$ dynamical variables $A = (A_{ij}) = (A_{ji}), \quad B = (B^{ij}) = (B^{ji}) \quad (i, j = 1, ..., N)$ action $S(A,B) = \frac{1}{2}A_{ij}B^{ij} - \frac{\lambda}{6} \quad \overbrace{g^{jk}g^{lm}g^{ni}}^{lm} A_{ij}A_{kl}A_{mn} - \sum_{i=1}^{l} \frac{\mu_k}{2k} \quad \overbrace{y_{i_1\dots i_k}y_{j_k\dots j_1}}^{lm} B^{i_1j_1} \cdots B^{i_kj_k}$ **Feynman rules** $j_k = \mu_k \ y_{i_1 \dots i_k} \ y_{j_k \dots j_1}$ k l

Plan

0. Introduction

1. The triangle-hinge models

- -- definition
- -- algebraic construction

2. General form of the free energy

- -- index network
- -- index functions

3. Matrix ring

-- Feynman diagrams

- -- duality
- 4. Restricting to manifolds
- 5. Introducing matter fields
- 6. Recent developments
- 7. Conclusion and outlook

Perturbative expansion of free energy

$$S(A, B) = A \cdot B - \lambda C \underbrace{A \cdot A \cdot A}_{triangle} + \sum_{k} \mu_{k} Y \underbrace{B \cdot B \cdots B}_{k-\text{hinge}}$$

$$\log Z = \sum_{\gamma} \frac{1}{S(\gamma)} \sum_{\{(i,j)_{e}\}} \left\{ \prod_{f: \text{ triangle}} \left[\lambda C^{(ij)(kl)(mn)}(f) \right] \prod_{h: \text{ hinge}} \left[\mu_{k} Y_{(i_{1}j_{1})(i_{2}j_{2})\dots(i_{k}j_{k})}(h) \right] \right\}$$

$$= \sum_{\gamma} \frac{1}{S(\gamma)} \sum_{\{(i,j)_{e}\}} \left\{ \prod_{f: \text{ triangle}} \left[\lambda g^{jk} g^{lm} g^{ni} \right] \prod_{h: \text{ hinge}} \left[\mu_{k} y_{i_{1}i_{2}\dots i_{k}} y_{j_{k}\dots j_{2}j_{1}} \right] \right\}$$

$$\left\{ \begin{array}{c} \bullet \gamma : \text{ connected diagram} \\ \bullet S(\gamma) : \text{ symmetry factor of } \gamma \\ \bullet (i, j)_{e} : \text{ indices on edge } e \end{array} \right.$$

$$\left\{ \begin{array}{c} \bullet j \\ e \end{array} \right\}$$

Each triangle has a factor of λ , and each *k*-hinge has a factor of μ_k .

$$\log Z = \sum_{\gamma} \frac{1}{S(\gamma)} \lambda^{s_2(\gamma)} \left(\prod_{k \ge 3} \mu_k^{s_1^k(\gamma)} \right) \mathcal{F}(\gamma)$$

 $\begin{cases} \bullet \ s_2(\gamma) : \texttt{\# of triangles (2-dim)} \\ \bullet \ s_1^k(\gamma) : \texttt{\# of } k\text{-hinges (1-dim)} \end{cases}$

Perturbative expansion of free energy

$$S(A, B) = A \cdot B - \lambda C \underbrace{A \cdot A \cdot A}_{triangle} + \sum_{k} \mu_{k} Y \underbrace{B \cdot B \cdots B}_{k-hihge}$$

$$\log Z = \sum_{\gamma} \frac{1}{S(\gamma)} \sum_{\{(i,j)_{e}\}} \left\{ \prod_{f: \text{ triangle}} \left[\lambda C^{(ij)(kl)(mn)}(f) \right] \prod_{h: \text{hinge}} \left[\mu_{k} Y_{(i_{1}j_{1})(i_{2}j_{2})\dots(i_{k}j_{k})}(h) \right] \right\}$$

$$= \sum_{\gamma} \frac{1}{S(\gamma)} \sum_{\{(i,j)_{e}\}} \left\{ \prod_{f: \text{ triangle}} \left[\lambda g^{jk} g^{lm} g^{ni} \right] \prod_{h: \text{hinge}} \left[\mu_{k} y_{i_{1}i_{2}\dots i_{k}} y_{j_{k}\dots j_{2}j_{1}} \right] \right\}$$

$$\left\{ \begin{array}{c} \bullet \gamma : \text{ connected diagram} \\ \bullet S(\gamma) : \text{ symmetry factor of } \gamma \\ \bullet (i, j)_{e} : \text{ indices on edge } e \end{array} \right.$$

$$\left\{ \begin{array}{c} \bullet p : \text{ indices on edge } e \\ \bullet \text{ Indices are contracted when two edges are identified} \end{array} \right\}$$

Each triangle has a factor of λ , and each *k*-hinge has a factor of μ_k .

$$Iog Z = \sum_{\gamma} \frac{1}{S(\gamma)} \lambda^{s_2(\gamma)} \left(\prod_{k \ge 3} \mu_k^{s_1^k(\gamma)}\right) \mathcal{F}(\gamma) \qquad \begin{cases} \bullet \ s_2(\gamma) : \# \text{ of triangles (2-dim)} \\ \bullet \ s_1^k(\gamma) : \# \text{ of } k\text{-hinges (1-dim)} \end{cases}$$

 $\mathcal{F}(\gamma)$: function of $y_{i_1...i_k}$ and g^{ij} (thus a function of y_{ij}^{k}) "index function of diagram γ "

Index functions and index network (1/3)

Properties of index function $\mathcal{F}(\gamma)$

(1) Index networks form 2D closed surfaces $\Sigma(v)$ enclosing vertices v

 $\Rightarrow \mathcal{F}(\gamma)$ is factorized as the product of the contributions from vertices *v*:

$$\mathcal{F}(\gamma) = \prod_{v: \text{ vertex of } \gamma} \zeta(v)$$

(2) Each contribution $\zeta(v)$ is a 2D topological invariant of $\Sigma(v)$:

 $\zeta(\mathbf{v}) = \mathcal{I}_{g(\mathbf{v})} \quad (g(\mathbf{v}) : \text{genus of } \Sigma(\mathbf{v}))$

Index functions and index network (2/3)

(1) Index networks form 2D closed surfaces $\Sigma(v)$ enclosing vertices v

Index lines on two different hinges are connected (via intermediate triangles) if and only if the hinges share the same vertex of γ .

(::)

The connected components of the index network have a one-to-one correspondence to the vertices of γ , and each connected component of the index network can be regarded as a <u>closed 2D surface</u> enclosing a vertex. \square $\Sigma(v)$: oriented, but not necessarily a sphere

 $\Rightarrow \mathcal{F}(\gamma) \text{ is factorized as } \mathcal{F}(\gamma) = \prod_{v: \text{ vertex of } \gamma} \zeta(v)$

Index functions and index network (3/3)

Necessity of large *N* **limit (1/2)**

Important point:

In order for γ to give a nonsingular 3D configuration, each vertex must have a neighborhood of B^3 topology.

$$g(\mathbf{v}) = 0 \text{ for } \forall \mathbf{v} \in \gamma$$

Large *N* limit ! (to be shown in the next slide)

Necessity of large N limit (2 / 2)

Recall:

 \mathcal{A} : semisimple \Leftrightarrow

We can easily find:

$$\mathcal{F}(\gamma) = \prod_{v: \text{ vertex of } \gamma} \left(\sum_{k}^{k} n_{k}^{2-2g} \right)^{2}$$

\mathcal{A} : a direct sum of matrix rings

$$\mathcal{A} = \oplus M_{n_k}(\mathbb{R})$$

<u>NB</u>:

matrix ring $M_n(\mathbb{R}) \equiv \{M = (M_{ab}) : n \times n \text{ matrix}\}$

A more detailed explanation will be given shortly.

Every vertex has a neighborhood of B^3 topology. We can single out the desired configurations $[g(v) = 0 \text{ for } \forall v]$ by taking the limit $n_k \rightarrow \infty$ for fixed number of vertices.

How to count # of vertices

We extend the algebra $\ensuremath{\mathcal{A}}$ to

$$\widehat{\mathcal{A}} \equiv \underbrace{\mathcal{A} \oplus \mathcal{A} \oplus \cdots \oplus \mathcal{A}}_{K \text{ copies}} = K\mathcal{A}$$

Then, the index function has the form $\zeta(v, \widehat{A}) = K \zeta(v, A)$,

and thus the Boltzmann weight becomes

$$\frac{1}{S} \left[\prod_{v} \left[K \prod_{k \ge 3} (\lambda^{2} \mu_{k})^{\frac{1}{2} t_{0}^{k}(v)} \right] \left(\frac{n}{\lambda} \right)^{2-2g(v)} \left(\frac{1}{\lambda} \right)^{\frac{1}{3} d(v)} \right]$$

$$\bigvee \left[\begin{cases} t_{0}^{k}(v) : \text{ \# of } k\text{-junctions} \\ t_{1}(v) : \text{ \# of segments} \\ t_{2}(v) : \text{ \# of segments} \\ t_{2}(v) : \text{ \# of polygons} \\ d(v) \equiv 2t_{1}(v) - 3t_{2}(v) \end{cases} \right]$$
in the index network around v

By treating *K* as a free parameter, one can count # of vertices.

Plan

0. Introduction

1. The triangle-hinge models

- -- definition
- -- algebraic construction
- 2. General form of the free energy -- index network
 - -- index functions

3. Matrix ring

- -- Feynman diagrams -- duality
- 4. Restricting to manifolds
- 5. Introducing matter fields
- 6. Recent developments
- 7. Conclusion and outlook

Matrix ring (1/3)

Set
$$\mathcal{A}$$
 to be a matrix ring:
 $\mathcal{A} = M_n(\mathbb{R}) = \{M = (M_{ab}) : n \times n \text{ matrix}\} = \bigoplus_{a,b=1}^n \mathbb{R} e_{ab} \left(e_{ab} = a \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} : \text{ matrix unit}$

$$\left(\begin{array}{c} i = (a,b) \\ N = n^2 \end{array} \right)$$

$$A_{ab,cd} = \underbrace{A \atop c} \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} b \\ c \end{array}$$

From $e_{ab} \times e_{cd} = \delta_{bc} e_{ad} \equiv y_{ab,cd}^{ef} e_{ef}$, we have

$$\begin{cases} y_{a_{1}b_{1},a_{2}b_{2},...,a_{k}b_{k}} = n \,\delta_{b_{1}a_{2}} \,\delta_{b_{2}a_{3}} \cdots \delta_{b_{k}a_{1}}, \\ g^{ab,cd} = \frac{1}{n} \,\delta^{ad} \,\delta^{bc}, \\ C^{(a_{1}b_{1},c_{1}d_{1})(a_{2}b_{2},c_{2}d_{2})(a_{3}b_{3},c_{3}d_{3})} = \frac{1}{n^{3}} \,\delta^{d_{1}a_{2}} \,\delta^{d_{2}a_{3}} \,\delta^{d_{3}a_{1}} \,\delta^{b_{3}c_{2}} \,\delta^{b_{2}c_{1}} \,\delta^{b_{1}c_{3}} \end{cases}$$

Matrix ring (2/3)

$$S(A,B) = \frac{1}{2} A_{ab,cd} B^{ab,cd} - \frac{\lambda}{6n^2} A_{ba,cd} A_{dc,ef} A_{fe,ab} - \sum_{k \ge 3} \frac{n^2 \mu_k}{2k} B^{a_1 a_2, b_2 b_1} B^{a_2 a_3, b_3 b_2} \cdots B^{a_k a_1, b_1 b_k}$$
$$\left(A_{ab,cd} = A_{cd,ab}, \quad B^{ab,cd} = B^{cd,ab}\right)$$

Feynman rules:

Matrix ring (2/3)

Matrix ring (2/3)

$$S(A,B) = \frac{1}{2} A_{ab,cd} B^{ab,cd} - \frac{\lambda}{6n^2} A_{ba,cd} A_{dc,ef} A_{fe,ab} - \sum_{k \ge 3} \frac{n^2 \mu_k}{2k} B^{a_1 a_2, b_2 b_1} B^{a_2 a_3, b_3 b_2} \cdots B^{a_k a_1, b_1 b_k}$$
$$\left(A_{ab,cd} = A_{cd,ab}, \quad B^{ab,cd} = B^{cd,ab}\right)$$

Feynman rules:

Matrix ring (3/3)

Duality (1/2)

Make a transformation of the form

$$\begin{cases} A_{ab,cd} \to \tilde{A}_{ab,cd} \equiv n B^{bc,da} \\ B^{ab,cd} \to \tilde{B}^{ab,cd} \equiv n^{-1} A_{bc,da} \end{cases}$$

This rotates the quadruple of indices by 90 degrees:

This interchanges the role of triangles and hinges:

Duality (2/2)

The action transforms as

$$\frac{\ell \text{-gon}}{S(A,B) = \frac{1}{2} A_{ab,cd} B^{ab,cd} - \sum_{\ell \ge 3} \frac{\lambda_{\ell}}{2n^{\ell} \ell} A_{b_1 a_1, a_2 b_2} A_{b_2 a_2, a_3 b_3} \cdots A_{b_{\ell} a_{\ell}, a_1 b_1} - \sum_{k \ge 3} \frac{n^2 \mu_k}{2k} B^{a_1 a_2, b_2 b_1} B^{a_2 a_3, b_3 b_2} \cdots B^{a_k a_1, b_1 b_k}}{(A_{ab,cd} = A_{cd,ab}, B^{ab,cd} = B^{cd,ab})}$$

Plan

0. Introduction

1. The triangle-hinge models

- -- definition
- -- algebraic construction

2. General form of the free energy

- -- index network
- -- index functions
- **3. Matrix ring** -- Feynman diagrams -- duality

4. Restricting to manifolds

- 5. Introducing matter fields
- 6. Recent developments
- 7. Conclusion and outlook

ω method (1/3)

We consider a matrix ring with n = 3m:

and change the form of C

from $C^{(a_1b_1,c_1d_1)(a_2b_2,c_2d_2)(a_3b_3,c_3d_3)} = \frac{1}{n^3} \delta^{d_1a_2} \delta^{d_2a_3} \delta^{d_3a_1} \delta^{b_3c_2} \delta^{b_2c_1} \delta^{b_1c_3}$

to:
$$C_{\text{grav}}^{(a_1b_1,c_1d_1)(a_2b_2,c_2d_2)(a_3b_3,c_3d_3)} \equiv \frac{1}{n^3} \omega^{d_1a_2} \omega^{d_2a_3} \omega^{d_3a_1} \omega^{b_3c_2} \omega^{b_2c_1} \omega^{b_1c_3}$$

$$\left[\boldsymbol{\omega} \equiv \begin{pmatrix} 0 & \mathbf{1}_m & 0 \\ 0 & 0 & \mathbf{1}_m \\ \mathbf{1}_m & 0 & 0 \end{pmatrix} \right]$$

This changes the triangle to:

ω method (2/3)

Each polygon with ℓ segments gets a factor:

tr
$$\omega^{\ell} = \begin{cases} n = 3m & (\ell = 0 \mod 3) \\ 0 & (\ell \neq 0 \mod 3) \end{cases}$$

Furthermore, if we take the limit

 $n \rightarrow \infty$ with $\frac{n}{\lambda}$ and $n^2 \mu_k$ kept finite ,

the dominant contribution comes from diagrams with $\ell = 3$ (*)

ω method (2/3)

Each polygon with ℓ segments gets a factor:

tr
$$\omega^{\ell} = \begin{cases} n = 3m & (\ell = 0 \mod 3) \\ 0 & (\ell = 0 \mod 3) \end{cases}$$

Furthermore, if we take the limit

 $n
ightarrow \infty$ with $rac{n}{\lambda}$ and $n^2 \mu_k$ kept finite ,

the dominant contribution comes from diagrams with $\ell = 3$ (*)

Every vertex *v* is a vertex of a tetrahedron.

The dominant diagrams are such that

- (1) the triangles and hinges form tetrahedra
- (2) neighborhoods around each vertex

have the topology of B^3

ω method (2/3)

Each polygon with ℓ segments gets a factor:

tr
$$\omega^{\ell} = \begin{cases} n = 3m & (\ell = 0 \mod 3) \\ 0 & (\ell = 0 \mod 3) \end{cases}$$

Furthermore, if we take the limit

 $n \rightarrow \infty$ with $\frac{n}{2}$ and $n^2 \mu_k$ kept finite ,

the dominant contribution comes from diagrams with $\ell = 3$ (*)

Every vertex *v* is a vertex of a tetrahedron.

The dominant diagrams are such that

(1) the triangles and hinges form tetrahedra

(2) neighborhoods around each vertex

have the topology of B^3 **tetrahedral decomposition of 3d manifold!**

ω method (3/3)

junction

 $\Sigma(\mathbf{V})$

 ω

Due to the relations

$$s_{2} = \frac{1}{3} \sum_{\mathbf{v}} t_{1}(\mathbf{v}), \quad s_{1}^{k} = \frac{1}{2} \sum_{\mathbf{v}} t_{0}^{k}(\mathbf{v}), \quad 2t_{1}(\mathbf{v}) = \sum_{\overline{\ell} \ge 1} \ell t_{2}^{\ell}(\mathbf{v}),$$

the Boltzmann weight is expressed as

$$\frac{1}{S}\lambda^{s_2}\left(\prod_{k\geq 3}\mu_k^{s_1^k}\right)\prod_v n^{2-2g(v)} = \frac{1}{S}\left[\prod_v \left[\prod_{k\geq 3}(\lambda^2\mu_k)^{\frac{1}{2}t_0^k(v)}\right]\left(\frac{n}{\lambda}\right)^{2-2g(v)}\left(\frac{1}{\lambda}\right)^{\frac{1}{3}d(v)}\right]$$

Here, the function d(v) is given by

$$d(\mathbf{v}) = 2t_1(\mathbf{v}) - 3\sum_{\ell \ge 3} t_2^{\ell}(\mathbf{v}) = \sum_{\ell \ge 3} (\ell - 3)t_2^{\ell}(\mathbf{v}) \ge 0$$

We thus see that if we take the limit $\lambda \to \infty$ with $\lambda^2 \mu_k$ and n / λ kept finite (or equivalently, the limit $n \to \infty$ with $n^2 \mu_k$ and n / λ kept finite), the leading contribution comes from the diagrams with d(v) = 0 (i.e. with $\ell = 3$).

Plan

0. Introduction

1. The triangle-hinge models

- -- definition
- -- algebraic construction

2. General form of the free energy

- -- index network
- -- index functions
- 3. Matrix ring
 - -- Feynman diagrams
 - -- duality
- 4. Restricting to manifolds

5. Introducing matter fields

- 6. Recent developments
- 7. Conclusion and outlook

Generalities

So far, we have only discussed "gravity sector":

$$\mathcal{A}_{grav} = M_{n=3m}(\mathbb{R}) = \bigoplus_{1 \le a,b \le n} \mathbb{R} e_{ab} \quad (n = 3m : \text{the size of matrices})$$

$$C_{grav} = \left(C_{grav}^{(a_1b_1,c_1d_1)(a_2b_2,c_2d_2)(a_3b_3,c_3d_3)} = \frac{1}{n^3} \omega^{d_1a_2} \omega^{d_2a_3} \omega^{d_3a_1} \omega^{b_3c_2} \omega^{b_2c_1} \omega^{b_1c_3} \right) \begin{bmatrix} \omega = \begin{pmatrix} 0 & 1_m & 0 \\ 0 & 0 & 1_m \\ 1_m & 0 & 0 \end{bmatrix} \end{bmatrix}$$

Restriction to manifolds still works when we extend the system as

The index function of diagram γ factorizes as

$$\begin{aligned} \mathcal{F}(\gamma) &\equiv \mathcal{F}(\gamma; \mathcal{A}) = \mathcal{F}(\gamma; \mathcal{A}_{\text{grav}}) \mathcal{F}(\gamma; \mathcal{A}_{\text{matt}}) \\ &\equiv \mathcal{F}_{\text{grav}}(\gamma) \mathcal{F}_{\text{matt}}(\gamma) \end{aligned}$$

We wil find that

one can assign local matter d.g.f. to simplices of arbitrary dimensions by taking (A_{matt}, C_{matt}) appropriately. (tetrahedra, triangles, edges, vertices)

Coloring tetrahedra (1/2)

Coloring tetrahedra (2/2)

Feynman rules

(1) For a fixed tetrahedral decomposition,

we assign a color $\alpha = 1, ..., q$ to each tetrahedron.

- (2) If two adjacent tetrahedra have colors α and β , we multiply $\lambda_{\alpha\beta}$.
- (3) Sum over tetrahedral decompotitions.

 $q\mbox{-state}$ spin system on 3D random volumes

Example:

q = 2

> 3D QG coupled to the Ising model

glued together with a thickened triangle

Comments

(1) One can assign local matter d.o.f. to simplices of arbitrary dimensions (tetrahedra, triangles, edges, vertices).

(2) (A version of) 3D colored tensor models can be realized as a triangle-hinge model by making coloring for tetrahedra, triangles and edges at a time.

Relation to colored tensor models (1/2)

(A version of) <u>3D Colored Tensor Models</u> are given by the action

$$S = \sum_{\mu=1}^{4} \phi_{IJK}^{\mu} \overline{\phi}_{IJK}^{\mu} + \kappa \phi_{IJK}^{1} \phi_{KML}^{2} \phi_{MJN}^{3} \phi_{LNI}^{4} + \kappa \overline{\phi}_{IJK}^{1} \overline{\phi}_{KML}^{2} \overline{\phi}_{MJN}^{3} \overline{\phi}_{LNI}^{4}$$

Here, $\begin{cases} \{I\}: \text{ color index set (assigned to edges)} \\ \{\mu\} = \{1, 2, 3, 4\} \text{ (assigned to triangles)} \\ \phi_{IJK}^{\mu} \text{ and } \overline{\phi}_{IJK}^{\mu} \text{ have no symmetry properties w.r.t. } I, J, K \end{cases}$

Feynman rules

- Interaction vertices are represented by two types of tetrahedra ($\alpha = \pm$) and any two adjacent tetrahedra have different types
- 4 different colors $\mu = 1, ..., 4$ are assigned to 4 triangles of each tetrahedron, s.t. the assignment agrees with the orientation of the tetrahedra when $\alpha = +$ while it is opposite when $\alpha = -$
- 2 tetrahedra are glued at their faces in such a way that
 - (1) 2 triangles to be identified have the same color μ and
 - (2) 2 edges to be identified have the same pair of colors $(\mu\nu)$

Relation to colored tensor models (2/2)

The above model can be realized as a triangle-hinge model by setting the matter associative algebra to $\mathcal{A}_{mat} = M_{2s}(\mathbb{R})$ and by coloring tetrahedra, triangles and edges <u>at a time</u>

action (only writing down the matter sector):

$$S = \sum_{(\mu\nu)} \frac{1}{2} A^{(\mu\nu)}_{\alpha\beta\gamma\delta} B^{\alpha\beta\gamma\delta}_{(\mu\nu)} - \frac{\lambda}{6(2s)^3} \sum_{\mu=1}^4 \frac{1}{6} \sum_{\nu,\rho,\sigma=1}^4 A^{(\mu\nu)}_{\alpha_1\beta_1\gamma_1\delta_1} A^{(\mu\nu)}_{\alpha_2\beta_2\gamma_2\delta_2} A^{(\mu\nu)}_{\alpha_3\beta_3\gamma_3\delta_3} \times (u^{\delta_1\alpha_2}_{+\mu} u^{\delta_2\alpha_3}_{+\mu} u^{\delta_3\alpha_1}_{-\mu} u^{\beta_3\gamma_2}_{-\mu} u^{\beta_1\gamma_3}_{-\mu} + u^{\delta_1\alpha_2}_{-\mu} u^{\delta_2\alpha_3}_{-\mu} u^{\delta_3\alpha_1}_{-\mu} u^{\beta_3\gamma_2}_{+\mu} u^{\beta_1\gamma_3}_{+\mu}) - \sum_{k\geq 2} \frac{n^2 \mu_k}{2k} \sum_{(\mu\nu)} B^{\alpha_1\alpha_2\beta_2\beta_1}_{(\mu\nu)} B^{\alpha_2\alpha_3\beta_3\beta_2}_{(\mu\nu)} \cdots B^{\alpha_k\alpha_1\beta_1\beta_k}_{(\mu\nu)}$$

Here,

- $(\mu, \nu) = (\nu, \mu) \ (\mu, \nu = 1, ..., 4; \ \mu \neq \nu)$ stand for the colors assinged to edges
- $u_{+\mu} = \begin{pmatrix} u_{\mu} & 0 \\ 0 & 0 \end{pmatrix}, \ u_{-\mu} = \begin{pmatrix} 0 & 0 \\ 0 & u_{\mu}^T \end{pmatrix}$ • $u_1 = 2^{-2/3} \begin{pmatrix} 0 & \sigma_1 & 0 \\ 0 & 0 & \sigma_1 \\ 0 & 0 & 0 \end{pmatrix}, \ u_2 = 2^{-2/3} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\sigma_2 \\ -\sigma_2 & 0 & 0 \end{pmatrix}, \ u_3 = 2^{-2/3} \begin{pmatrix} 0 & \sigma_3 & 0 \\ 0 & 0 & 0 \\ \sigma_3 & 0 & 0 \end{pmatrix}, \ u_4 = 2^{1/3} \begin{pmatrix} 0 & i\sigma_2 & 0 \\ 0 & 0 & -\sigma_3 \\ -\sigma_1 & 0 & 0 \end{pmatrix}$

where $s \times s$ matrix u_{μ} (s can be arbitrary) are chosen so as to satisfy

$$\operatorname{tr}(u_{\mu}u_{\nu}u_{\rho})\operatorname{tr}(u_{\nu}u_{\mu}u_{\sigma})\operatorname{tr}(u_{\mu}u_{\rho}u_{\sigma})\operatorname{tr}(u_{\rho}u_{\nu}u_{\sigma}) = \begin{cases} 1 \ (\epsilon_{\mu\nu\rho\sigma} = +1) \\ 0 \ (\text{otherwise}) \end{cases}$$

Plan

0. Introduction

1. The triangle-hinge models

- -- definition
- -- algebraic construction

2. General form of the free energy

- -- index network
- -- index functions
- 3. Matrix ring
 - -- Feynman diagrams
 - -- duality
- 4. Restricting to manifolds
- 5. Introducing matter fields

6. Recent developments

7. Conclusion and outlook

Possible 3rd order phase transition

As a recent development, we have shown:

- There exists an integration contour \bullet for which the free energy is defined nonperturbatively.
- The models can almost be reduced to a dynamical system of eigenvalues. $S(A,B) = \beta \left| \frac{K(A,B)}{\text{bilinear}} + \sum_{\ell} \text{tr}A^{\ell} + \sum_{\nu} \text{tr}B^{k} \right|$

3rd-order

phase transition

- The models exhibit 3^{rd} -order phase transitions in the absence of ω , that are
 - -- "1-cut to 2-cut" phase transitions
 - -- very similar to 1-matix models with a double-well potential

Road to the manifold case (1/2)

When one introduces the nontrivial ω , $\omega = \begin{pmatrix} 0 & 1_m & 0 \\ 0 & 0 & 1_m \\ 1_m & 0 & 0 \end{pmatrix}$, to restrict to manifolds,

the matrix bilinear K(A, B) becomes complex after the change of variables:

$$S(A,B) = \frac{1}{2} K_{\omega}(A,B) - \sum_{\ell} \frac{\lambda_{\ell}}{2\ell} \operatorname{tr} A^{\ell} - \sum_{k} \frac{\mu_{k}}{2kn^{k-2}} \operatorname{tr} B^{k}$$
$$K_{\omega}(A,B) \equiv \left(K_{\omega}\right)^{abcd}_{efgh} A_{abcd} B^{efgh} \left[\left(K_{\omega}\right)^{abcd}_{efgh} \in \mathbb{C} \right]$$

This has a severe <u>sign problem</u> in Monte Carlo simulations for large N

We decided to develop a machinery to solve the sign problem.

Road to the manifold case (2/2)

We have invented an algorithm,

"tempered, generalized Lefschetz-thimble method (tGLTM)", which seems to solve the sign problem versatilely:

[MF-Umeda, Alexandru et al. 2016]

We are now applying the algorithm to the triangle-hinge models.

[A few nice byproducts in this detour]

Our tGLTM actually can be applied to many other fields, including QCD at finite density, Hubbard model away from half filling, ... [MF-Matsumoto-Umeda 2018, in preparation]

In the course of optimizing the parameters in numerical simulations, we found that one can introduce a geometry to Markov chain Monte Carlo which measures the difficulty of transitions between configurations. This gives the first example of the <u>emergence of geometry in stochastic systems</u>.

> [MF-Matsumoto-Umeda 2017, 2018] N. Matsumoto's poster

Plan

0. Introduction

1. The triangle-hinge models

- -- definition
- -- algebraic construction

2. General form of the free energy

- -- index network
- -- index functions
- 3. Matrix ring
 - -- Feynman diagrams
 - -- duality
- 4. Restricting to manifolds
- 5. Introducing matter fields
- 6. Recent developments

7. Conclusion and outlook

Conclusion and outlook

What we have done:

- We propose a new class of matrix models that generate 3D random volumes.
- The models are characterized by semisimple associative algebras $\mathcal{A}.$
- Although most of the Feynman diagrams are not manifolds, one can reduce the possible Feynman diagrams to those representing tetrahedral decompositions of 3D manifolds.
- Local matter d.o.f. can be introduced (located on simplices of any dimensions).

Future directions:

- Need to develop analytic treatment. [MF-Sugishita-Umeda (work in progress)] (One can actually diagonalize the interaction parts.)
- Developing a machinery to restrict to a particular topology.
- Introducing matter fields corresponding to the target space coords $X^{\mu}(\xi)$ and investigating the critical behaviors. $\left(\alpha \Rightarrow \mathbf{x} \in \mathbf{R}^{d}, \lambda_{\alpha\beta} \Rightarrow \lambda_{\mathbf{x},\mathbf{y}}\right)$
- Introducing supersymmetry and investigating the critical behaviors.
- Application to condensed matter physics?

Thank you.