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The problem of quantum gravity

It is hard to quantize general relativity — Difficult by the standard 
field theoretical renormalization procedure: Quantum fluctuations 
in short-distances diverge too seriously. 

An idea for a way out : Leave from the conventional description of 
spacetimes, and use new variables to describe them.

Emergent spacetime : Spacetime and general relativity (and other field 
theories) are emergent phenomena valid only in the scales much larger 
than the Planck scale. 

Quantum gravity : A theory/model, which has such new variables, 
is quantizable, and generates macroscopic spacetimes. 



Tensor models
Generalization of the matrix models to tensors, based on that the matrix 
models successfully describe 2-dim quantum gravity.

J,Ambjorn, B.Durhuus, T.Jonsson, Mod.Phys.Lett. A6 (1991) 1133-1146
NS, Mod.Phys.Lett. A6 (1991) 2613-2624 

Simplicial spacesFeynman diagrams of tensor models
Dual

Mab → Ta1…aD

∫
N

∏
a1,a2=1

dMa1a2
exp[−S(M)] → ∫

N

∏
{ai}

dTa1a2…aD
exp[−S(T )]

e.g. D=3

Emergent space : 



However, the dominant graphs in large N limit of (colored) tensor models 
are too singular to be considered as macroscopic spaces  — they are 
branched polymers or other non-smooth objects.

R. Gurau and J. P. Ryan, Annales Henri Poincare 15 no. 11, (2014) 2085–2131
V. Bonzom, R. Gurau, A. Riello, and V. Rivasseau, Nucl. Phys. B853 (2011) 174–195
L. Lionni and J. Thurigen, arXiv:1707.08931 

So far, from the view point of quantum gravity, it seems hard to obtain 
emergence of macroscopic spaces from the tensor models.



Another option of tensor model

Inspired by the success of Causal Dynamical Triangulation (CDT) 
— Emergence of macroscopic spaces.

A tensor model in Hamilton formalism (or canonical formalism). 
Dynamical variables: A canonical conjugate pair of tensors  
                                                                 (symmetric, real, three indices)

[Q̂abc, ̂Pdef] = i δadδbeδcf + ⋯

NS, Int.J.Mod.Phys. A27 (2012) 1250020, arXiv:1111.2790 

a, b, … = 1,2,…, N
{Qabc, Pdef} = δadδbeδcf + ⋯Classical case:

Quantum case:

We named the model Canonical Tensor Model (CTM).

Taken from J. Ambjorn, J. Jurkiewicz, R. Loll, Contemp.Phys. 47 (2006) 103-117 

Causal structure seems essentially
important in quantum gravity.



To describe gravity, Hamiltonian formalism needs special treatment. 

One has to incorporate “general covariance” to assure the 
independence of physics from spacetime foliations.

TimeTime

Initial time slice

Must be consistent



A well-known way to do: Hamiltonian is a linear combination of first-class 
constraints, as in the Hamilton (ADM) formalism of general relativity.

ℋ(q, p, N) = NiHi(q, p)

{Hi(q, p), Hj(q, p)} = f k
ij(q, p) Hk(q, p)

Ni : Arbitrary parameters determining the way of time evolutions.

First-class constraints form a closed poisson algebra.

In the quantum case, similar closed structure must exist. 

q, p → ̂q, ̂p { , } →
1
i

[ , ]



ℋ = NaHa + NabJab

In tensor model, the closure condition puts strong constraints, and there 
exists only a unique choice under physically reasonable assumptions.  

Ha =
1
2 (PabcPbdeQcde − λ Qabb) λ = 0, ± 1

Jab =
1
4 (QacdPbcd − QbcdPacd)

Quantum case:

Ĥa =
1
2 ( ̂Pabc

̂PbdeQ̂cde − λ Q̂abb + i λH
̂Pabb)

λH =
(N + 2)(N + 3)

2

(a, b, … = 1,2,…, N )

“Hamiltonian” constraints

“Momentum” constraints

From normal ordering

(SO(N) generators)

NS, Int.J.Mod.Phys. A27 (2012) 1250096, arXiv:1203.0421



The Poisson algebra of the constraints :

{H(n1), H(n2)} = J ([ñ1, ñ2] + 2λ n1 ∧ n2)
{J(m), H(n)} = H(mn)

{J(m1), J(m2)} = J ([m1, m2]) ñbc ≡ naPabc

Non-linearity

H(n) ≡ naHa J(m) ≡ mabJab
(n1 ∧ n2)ab ≡ n1an2b − n1bn2a

Very similar to the structure in ADM formalism of general relativity.

The same algebraic structure holds also in the quantum case.



Main previous results on CTM

(1) Connections between classical CTM and general relativity (GR) 

d
dt

Pabc = {Pabc, ℋ} = − NdPde(aPbc)e + Nd(aPbc)

✤ The N=1 case agrees with the mini-superspace treatment of GR.

✤ The classical e.o.m. of CTM,

S = ∫ dD+1x (2R −
1
2

(∇ϕ)2 − e− α ϕ+                                     )
in a formal continuum limit, 

Pabc → Pxyz a, b, c ∈ ℕ x, y, x ∈ ℝD, x ∼ y ∼ z

(…) : symmetrization

α = (6 − D)/8(D − 1)

agrees with that in the Hamilton-Jacobi formalism of a GR system 
with the following Liouville-type action 

higher derivatives/spins

H.Chen, NS, Y.Sato, Phys.Rev. D95 (2017), 066008, arXiv:1609.01946

NS, Y.Sato, Phys.Lett. B732 (2014) 32-35, arXiv:1401.2062



(2) In the quantum case, there exists a physical state which can be solved 
exactly.

Ĥa |Ψ⟩ = ̂Jab |Ψ⟩ = 0

In terms of a wave function in Pabc, this gives a system of first-order 
partial differential equations :

(PabcPbde
∂

Pcde
− λ

∂
Pabb

+ i λHPabb) Ψ(P) = 0

(Pacd
∂

∂Pbcd
− Pbcd

∂
∂Pacd ) Ψ(P) = 0

Physical state condition :

G.Narain, NS, Y.Sato, JHEP 1501 (2015) 010, arXiv:1410.2683



A systematic exact solution : 

Ψ(P) = ψ(P)
λH
2

ψ(P) = ∫C

N

∏
a=1

dϕadϕ̃ exp (Pabcϕaϕbϕc + ϕaϕaϕ̃ −
4

27λ
ϕ̃3)

✤ The contour C must be taken appropriately to make the integral 
convergent. Picard-Lefschetz theory may be applicable. 

✤ A sort of generalization of the Airy function to the case of multiple 
integration variables.

✤ Looks like a sort of bosonic SYK model,  if random Pabc is considered.



The “physical” choice of the contour :

ψ(P) = lim
ϵ→+0 ∫RN+1

N

∏
a=1

dϕadϕ̃ exp (i (Pabcϕaϕbϕc + ϕaϕaϕ̃ −
4

27λ
ϕ̃3) − ϵ ϕ2)

✤           is finite for general real           except for some singular loci. The 
singular loci can be obtained by solving the equations for critical points.
ψ(P) Pabc

Feynman prescription

✤ In place of Feynman prescription, one may define the integral with 
small deformation of the contour from real.



✤ Singular loci are tightly related to Lie group symmetries. Large peaks 
exist at Pabc invariant under Lie groups. 

(hP)abc ≡ h(a
dPbc)d

SO(2,1)e.g.

|ψ(P) |

Pabc
P = hP P = h′�P P = h′�′�P
h ∈ H h′� ∈ H′� h′�′� ∈ H′�′�

h ∈ H

D.Obster, NS, PTEP 2018 (2018), 043A01, arXiv:1710.07449;
Eur.Phys.J. C77 (2017) no.11, 783, arXiv:1704.02113



The question in this talk

Is there a way to regard Pabc = a space (spacetime) ?  

If answered, 

✤ Classical EOM of Pabc = Time evolution of a space, namely, spacetime.

✤ Pabc at the peaks of the wave function

 Quantum mechanically favored spacetimes with Lie group symmetries.

=

Is the canonical tensor model a theory of spacetime ?

(Assuming the peaks are integrable.)



The answer in this talk

Pabc = Data in data analysis

Geometric interpretation

J. M. Landsberg, “Tensors: Geometry and Applications”, 
American Mathematical Society, Providence, 2012. 

G. Carlsson, “Topology and data”,
Bulletin (New Series) of the American Mathematical Society, Vol 46, 
Number 2, April 2009, Pages 255–308

T.Kawano, D.Obster, NS, Phys.Rev. D97 (2018), 124061 (arXiv:1805.04800)



More explicitly : 

Given Pabc



More explicitly : 

Tensor-rank decomposition

Given Pabc

Points

Point cloud in N-dim. space
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More explicitly : 

Tensor-rank decomposition

Topology
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Persistent homology



More explicitly : 

Tensor-rank decomposition

Topology

Laplacian

 & Neighborhoods

Given Pabc

Points

Persistent homology

Geometry



Real symmetric tensor-rank decomposition

Pabc =
R

∑
r=1

vr
avr

bvr
c

We regard each                              represents a point. Point cloud.

a, b, c = 1,2,…, N

vr (r = 1,2,…, R)

The smallest R is called the rank of a tensor.

The rank R is the total number of points forming a space.

Each summand             is a rank-one tensor, which is the simplest tensor.vr
avr

bvr
c

vr ∈ ℝN



The points    and      are neighbors.

It is natural to introduce the notion of neighborhood by inner products 
between vectors representing points.

|vr ⋅ vr′�| > c r r′�

vr′�

The choice of cut-off c will introduce arbitrariness. 
However, in our examples, there exist reasonable ranges.

(vr ⋅ vr′� ≡ vr
avr′�

a )

vr
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0
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Histogram for 

Self
Nearest
neighbors

vr ⋅ vr′�
Most of them nearly vanish

vr ⋅ vr′� ∼ 0

 Reasonable range of c

There are only a few neighboring points around 
each point: Locality is holding.

|vr ⋅ vr′ �| > c

r
r′�

The other points cannot be seen from the point r.



Through this neighborhood relation, one can define the adjacency distance 
between points. 

dadj=6

This distance is convenient to capture rough geometric properties.

E.g.



Adjacency distance can be used to extract persistent homology.
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0.8

1.0

Betti_3

Is this S3 ?

Computed by Ripser.



Other useful applications of persistent homology:

• Determine the topological dimension D 

• Distinguish boundaries

Region(d1 < d < d2) ∼ SD−1

Region(d1 < d < d2) ∼ BD−1

d1

d2



More detailed geometries — Metric and a scalar field 

Points : vr ∈ ℝN (r = 1,2,…, R)Tensor Pabc

|vr |  A scalar field

vr ⋅ vr′� A metric field 

In fact, the formal continuum limit of the canonical tensor model 
contains a scalar field, a metric field, and higher spin fields. 

Larger, shorter distance and vice versa.

r
r′�

Not yet identified.
Higher moments of     ? vr

Very roughly,



From the canonical tensor model, the following K has a good motivation as 
a Laplace operator. From K, one can deduce various geometric quantities.

Krr′� = β(r)−1β(r′�)−1wr ⋅ wr′� − δrr′�

R

∑
r′�=1

wr ⋅ wr′�β(r′�)−2 = 1

Pabc =
R

∑
r=1

1
β(r)2

wr
awr

bwr
c : Tensor-rank decomposition 

: Normalization condition

β(r)(          ~ Scalar field)

dρ/dt = Kρ(eg. Virtual diffusion process                    )

(r, r′� = 1,2,…, R)



Examples : Homogenous spheres

✤ Homogeneous S2 

: Spherical harmonics with 

P(l1m1) (l2m2) (l3m3) = ∫S2

dΩ Ỹl1m1
(Ω) Ỹl2m2

(Ω) Ỹl3m3
(Ω)

Ỹlm(Ω) =

1

2
(Ylm(Ω) + Y*lm(Ω)) e−l2/L2 (m > 0)

Yl0(Ω) e−l2/L2 (m = 0)
1

2i
(Ylm(Ω) − Y*lm(Ω)) e−l2/L2 (m > 0)

a = (l, m)

: Regulator to smooth the cutoff. Necessary for locality.

: integers,l, m |m | ≤ l ≤ L L : Cut-off

Yl,m(Ω) Ω = (θ, ϕ)

e−l2/L2

(More eg. in Taigen’s poster) 



: n-dimensional spherical harmonics Yl1l2…ln(Ω)

| l1 | ≤ l2 ≤ ⋯ ≤ ln ≤ L

P(l1…ln) (l′�1…l′ �n) (l′�′ �1…l′ �′�n) = ∫Sn

dΩ Ỹl1…ln(Ω) Ỹl′ �1…l′�n
(Ω) Ỹl′�′ �1…l′ �′�n

(Ω)

✤ Homogeneous Sn 

a = (l1…ln)

Ỹl1…ln(Ω) : Real combinations of                       with a regulator.Yl1l2…ln(Ω)



R is chosen so that the remaining error be a few percents or so.

min
vr

a

Pabc −
R

∑
r=1

vr
avr

bvr
c

2

The tensor-rank decomposition was done numerically: 

(We used our own C++ program.) 



We numerically solved the classical e.o.m. of CTM, and performed tensor-
rank decompositions, etc, of Pabc(t) at some representative times:
Initial conditions: Homogenous spheres S1, S2, S3.  
Evolution parameters: Homogeneous      ,              . 

d
dt

Pabc = {Pabc, ℋ} = − NdPde(aPbc)e + Nd(aPbc)

Pabc |t=0 = Pabc of homogeneous S1,2,3

e.g. S2

Na Nab = 0

The topology does not change.

e.o.m.:



We numerically solved the classical e.o.m. of CTM, and performed tensor-
rank decompositions, etc, of Pabc(t) at some representative times:
Initial conditions: Homogenous spheres S1, S2, S3.  
Evolution parameters: Homogeneous      ,              . 

d
dt

Pabc = {Pabc, ℋ} = − NdPde(aPbc)e + Nd(aPbc)

Pabc |t=0 = Pabc of homogeneous S1,2,3

e.g. S2

Na Nab = 0

The topology does not change.

e.o.m.:
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The remaining error of the tensor-rank decomposition increases in time 
for fixed R. In other words, one has to increase the number of points to 
describe spaces with fixed correctness, as time passes.

ΔP2 ≡ (Pabc −
R

∑
i=1

vi
avi

bv
i
c)2

(i) The time evolution increases “complexity” of the spaces.

Fuzzy two-sphere with N=36Error ratio

t



(ii) The time evolutions agree with that of the general relativistic 
system obtained previously in the formal continuum limit.
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Time evolution of the scalar field
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Dots: From Pabc at representative times in canonical tensor model

Lines: General relativistic system
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Time evolutions of the sizes of the spaces 

e−1
low

log(t + 1)

d log e−1
low/d log(t + 1)

elow : the lowest eigenvalue of -K

∝ (the size of a space)-2



Summary

• The techniques of data analysis, namely, tensor-rank decomposition, 
persistent homology, and Laplace operator, gives a spacetime 
(topological and geometric) interpretation of the canonical tensor model. 

• The classical time evolutions of the homogeneous spheres agrees with 
that of the general relativistic system.

• The real symmetric three-indexed tensor can in principle describe any 
smooth spaces with any topologies and dimensions. (Taigen’s poster)



Future problems

• Extend analysis to larger systems. Topology changes, singularities, …

• What are black hole, horizon, singularity, general relativity, energy, 
momentum, black hole temperature/entropy,…, in data analysis ?

• What are the spacetime interpretation of the configurations at peaks?
|ψ (P) |

Pabc

• Which is a space, Qabc or Pabc ? Actually, in stationary phase approx., 

Q̂abcψ ∼ ∫H
dh ϕa(h) ϕb(h) ϕc(h) + ∫H′�

+ ⋯

Group manifold H appears in a continuous tensor-rank decomposition. 


